| L(s)  = 1  |   + (0.104 − 0.994i)2-s     + (−0.978 − 0.207i)4-s       + (−0.978 + 0.207i)7-s   + (−0.309 + 0.951i)8-s           + (−0.978 − 0.207i)13-s   + (0.104 + 0.994i)14-s     + (0.913 + 0.406i)16-s   + (−0.309 − 0.951i)17-s     + (−0.309 + 0.951i)19-s         + (−0.978 − 0.207i)23-s       + (−0.309 + 0.951i)26-s     + 28-s   + (0.669 − 0.743i)29-s     + (−0.5 + 0.866i)31-s   + (0.5 − 0.866i)32-s    + ⋯ | 
 
| L(s)  = 1  |   + (0.104 − 0.994i)2-s     + (−0.978 − 0.207i)4-s       + (−0.978 + 0.207i)7-s   + (−0.309 + 0.951i)8-s           + (−0.978 − 0.207i)13-s   + (0.104 + 0.994i)14-s     + (0.913 + 0.406i)16-s   + (−0.309 − 0.951i)17-s     + (−0.309 + 0.951i)19-s         + (−0.978 − 0.207i)23-s       + (−0.309 + 0.951i)26-s     + 28-s   + (0.669 − 0.743i)29-s     + (−0.5 + 0.866i)31-s   + (0.5 − 0.866i)32-s    + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(\frac{1}{2})\)  | 
            \(\approx\) | 
             \(0.6740980888 - 0.4714854824i\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.6740980888 - 0.4714854824i\)  | 
    
    
        
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(0.6786120595 - 0.3429569418i\)  | 
          
    
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(0.6786120595 - 0.3429569418i\)  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 3 |  \( 1 \)  | 
 | 5 |  \( 1 \)  | 
 | 11 |  \( 1 \)  | 
| good | 2 |  \( 1 + (0.104 - 0.994i)T \)  | 
 | 7 |  \( 1 + (-0.978 + 0.207i)T \)  | 
 | 13 |  \( 1 + (-0.978 - 0.207i)T \)  | 
 | 17 |  \( 1 + (-0.309 - 0.951i)T \)  | 
 | 19 |  \( 1 + (-0.309 + 0.951i)T \)  | 
 | 23 |  \( 1 + (-0.978 - 0.207i)T \)  | 
 | 29 |  \( 1 + (0.669 - 0.743i)T \)  | 
 | 31 |  \( 1 + (-0.5 + 0.866i)T \)  | 
 | 37 |  \( 1 + (0.809 + 0.587i)T \)  | 
 | 41 |  \( 1 + (-0.5 + 0.866i)T \)  | 
 | 43 |  \( 1 + (-0.5 - 0.866i)T \)  | 
 | 47 |  \( 1 + (-0.104 + 0.994i)T \)  | 
 | 53 |  \( 1 + (0.309 - 0.951i)T \)  | 
 | 59 |  \( 1 + (-0.913 + 0.406i)T \)  | 
 | 61 |  \( 1 + (0.978 - 0.207i)T \)  | 
 | 67 |  \( 1 + (-0.913 + 0.406i)T \)  | 
 | 71 |  \( 1 - T \)  | 
 | 73 |  \( 1 + T \)  | 
 | 79 |  \( 1 + (0.978 - 0.207i)T \)  | 
 | 83 |  \( 1 + (-0.669 + 0.743i)T \)  | 
 | 89 |  \( 1 + (-0.309 - 0.951i)T \)  | 
 | 97 |  \( 1 + (0.978 - 0.207i)T \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \  (1 - \alpha_{p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−19.681733618752011176976596270812, −18.81483865969306793227175035139, −18.0316220099571689215196636681, −17.29436044967772677080427879591, −16.721951923216456450988045386217, −16.09731211032356809216413604164, −15.31580691687045864945589342631, −14.79262076411697875913211248468, −13.92271789147836824832410479352, −13.24191297790234945561159848497, −12.64798798571700910616177831506, −11.94984137199870297762755465417, −10.718798294732297665585319142611, −9.95448393317174808055070393478, −9.31568140497037884730673962965, −8.60746203619147366883399111046, −7.68353504907789824957142133764, −7.00815932303655699744019233608, −6.35250152099370764846229594327, −5.664941021181570808844761464203, −4.66840608270157981215206380, −4.0116380762233822528949815122, −3.13903393022150285368737783341, −2.06467750044071299366223313713, −0.50817051833794448429507075320, 
0.50917911136240234435315476637, 1.81463099798911900190416753327, 2.64117524132305302145568820051, 3.26384334915607058979759282902, 4.20505468083006461407684305862, 4.96377688082274806140622595580, 5.85015183721607657540625952518, 6.64245168430054891948300865137, 7.72206673825019473702803589366, 8.5276041472178900354420685512, 9.41515817297302762572987174556, 9.97469606729996692411081286367, 10.44334363554418711541677165668, 11.62402032409303151855735134481, 12.07188755593477437265819940558, 12.74829598907241845370329837673, 13.430500769208860887912053263566, 14.189726811927609532941200968418, 14.86352557856140743263437331301, 15.80399823446878092282306762862, 16.55928766805209102408863741187, 17.3231405438337925834967573047, 18.23347607170988853194393249386, 18.63933814040555367591631776698, 19.63752229096568437872388835983