| L(s) = 1 | + (0.563 − 0.826i)2-s + (−0.680 + 0.733i)3-s + (−0.365 − 0.930i)4-s + (0.222 + 0.974i)6-s + (−0.974 − 0.222i)8-s + (−0.0747 − 0.997i)9-s + (0.0747 − 0.997i)11-s + (0.930 + 0.365i)12-s + (0.433 + 0.900i)13-s + (−0.733 + 0.680i)16-s + (−0.149 − 0.988i)17-s + (−0.866 − 0.5i)18-s + (−0.5 − 0.866i)19-s + (−0.781 − 0.623i)22-s + (0.149 − 0.988i)23-s + (0.826 − 0.563i)24-s + ⋯ |
| L(s) = 1 | + (0.563 − 0.826i)2-s + (−0.680 + 0.733i)3-s + (−0.365 − 0.930i)4-s + (0.222 + 0.974i)6-s + (−0.974 − 0.222i)8-s + (−0.0747 − 0.997i)9-s + (0.0747 − 0.997i)11-s + (0.930 + 0.365i)12-s + (0.433 + 0.900i)13-s + (−0.733 + 0.680i)16-s + (−0.149 − 0.988i)17-s + (−0.866 − 0.5i)18-s + (−0.5 − 0.866i)19-s + (−0.781 − 0.623i)22-s + (0.149 − 0.988i)23-s + (0.826 − 0.563i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.488 - 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.488 - 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5078057461 - 0.8667204905i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5078057461 - 0.8667204905i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8663152627 - 0.4910122992i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8663152627 - 0.4910122992i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (0.563 - 0.826i)T \) |
| 3 | \( 1 + (-0.680 + 0.733i)T \) |
| 11 | \( 1 + (0.0747 - 0.997i)T \) |
| 13 | \( 1 + (0.433 + 0.900i)T \) |
| 17 | \( 1 + (-0.149 - 0.988i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.149 - 0.988i)T \) |
| 29 | \( 1 + (-0.623 - 0.781i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.930 - 0.365i)T \) |
| 41 | \( 1 + (0.222 - 0.974i)T \) |
| 43 | \( 1 + (0.974 - 0.222i)T \) |
| 47 | \( 1 + (-0.563 + 0.826i)T \) |
| 53 | \( 1 + (-0.930 + 0.365i)T \) |
| 59 | \( 1 + (0.955 + 0.294i)T \) |
| 61 | \( 1 + (-0.365 + 0.930i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + (0.623 - 0.781i)T \) |
| 73 | \( 1 + (-0.563 - 0.826i)T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.433 + 0.900i)T \) |
| 89 | \( 1 + (0.0747 + 0.997i)T \) |
| 97 | \( 1 + iT \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.98270809385845784159579897417, −25.31614710409830322489827827115, −24.55922071273193554294856832474, −23.483169901474874392332722063964, −23.04992852979827730721023536585, −22.18365206999272692643853359259, −21.16391042901169975012666218404, −19.933690989439485552453375062395, −18.68331272515747148645765552610, −17.65422291022943395003242045269, −17.2484053301875479385181517237, −16.0848577184411496856114764808, −15.14951964497798746802954568994, −14.1408276802011916570185514812, −12.86883029963037706359412219316, −12.62251838206897355780286554569, −11.38029155858348198369553194645, −10.13707531108267780030321458870, −8.49560705640589629354299752860, −7.64570101626901493474922427887, −6.6692935287837900013327990337, −5.771389765284123409365854110332, −4.822237787532672071949741745222, −3.45831458515962896768620626811, −1.73787974239153286119517822,
0.65872606585899260169724590476, 2.5188418351300273919501511213, 3.81950459620709118702849089460, 4.65223901791442300247469414401, 5.77014851463653407552599508786, 6.66820450784506286320023348607, 8.81045472802040439274056814091, 9.52442427612754303287510145835, 10.81543375420990066878048972986, 11.286322391071413422369171487809, 12.211206934457612860013223822620, 13.456073177635336054877964546117, 14.30932722419083105313670576709, 15.46167254981188432731667990450, 16.28856669682656964038552991194, 17.419334035347219254885613993122, 18.576593797264215045868571368818, 19.33449527855566062261758759211, 20.790091624165640624404560998817, 21.05520180484674288239640311510, 22.22208036629956073689987241060, 22.66607714413518504979493376993, 23.83610728350100398224125367800, 24.39788177535783194515984374443, 26.16188158494365234455743178270