L(s) = 1 | + (0.997 − 0.0654i)3-s + (0.946 + 0.321i)5-s + (−0.382 − 0.923i)7-s + (0.991 − 0.130i)9-s + (−0.831 − 0.555i)11-s + (−0.946 + 0.321i)13-s + (0.965 + 0.258i)15-s + (−0.965 + 0.258i)17-s + (−0.442 − 0.896i)21-s + (0.130 + 0.991i)23-s + (0.793 + 0.608i)25-s + (0.980 − 0.195i)27-s + (0.896 + 0.442i)29-s + i·31-s + (−0.866 − 0.5i)33-s + ⋯ |
L(s) = 1 | + (0.997 − 0.0654i)3-s + (0.946 + 0.321i)5-s + (−0.382 − 0.923i)7-s + (0.991 − 0.130i)9-s + (−0.831 − 0.555i)11-s + (−0.946 + 0.321i)13-s + (0.965 + 0.258i)15-s + (−0.965 + 0.258i)17-s + (−0.442 − 0.896i)21-s + (0.130 + 0.991i)23-s + (0.793 + 0.608i)25-s + (0.980 − 0.195i)27-s + (0.896 + 0.442i)29-s + i·31-s + (−0.866 − 0.5i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2432 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.980 + 0.194i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2432 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.980 + 0.194i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.589384929 + 0.3532676385i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.589384929 + 0.3532676385i\) |
\(L(1)\) |
\(\approx\) |
\(1.613117894 - 0.03409367173i\) |
\(L(1)\) |
\(\approx\) |
\(1.613117894 - 0.03409367173i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.997 - 0.0654i)T \) |
| 5 | \( 1 + (0.946 + 0.321i)T \) |
| 7 | \( 1 + (-0.382 - 0.923i)T \) |
| 11 | \( 1 + (-0.831 - 0.555i)T \) |
| 13 | \( 1 + (-0.946 + 0.321i)T \) |
| 17 | \( 1 + (-0.965 + 0.258i)T \) |
| 23 | \( 1 + (0.130 + 0.991i)T \) |
| 29 | \( 1 + (0.896 + 0.442i)T \) |
| 31 | \( 1 + iT \) |
| 37 | \( 1 + (0.980 - 0.195i)T \) |
| 41 | \( 1 + (0.793 - 0.608i)T \) |
| 43 | \( 1 + (-0.442 - 0.896i)T \) |
| 47 | \( 1 + (0.258 - 0.965i)T \) |
| 53 | \( 1 + (-0.0654 + 0.997i)T \) |
| 59 | \( 1 + (0.946 + 0.321i)T \) |
| 61 | \( 1 + (-0.442 + 0.896i)T \) |
| 67 | \( 1 + (0.442 - 0.896i)T \) |
| 71 | \( 1 + (-0.991 - 0.130i)T \) |
| 73 | \( 1 + (0.608 + 0.793i)T \) |
| 79 | \( 1 + (0.258 + 0.965i)T \) |
| 83 | \( 1 + (-0.980 - 0.195i)T \) |
| 89 | \( 1 + (-0.793 - 0.608i)T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.44581043243724437367719883910, −18.49145999672529790668702355836, −18.07648144343181135680617760679, −17.30698990707702553768854177851, −16.26271518510126847966581241073, −15.692947192118978042440907578756, −14.888231032318731333691926636782, −14.45761245360191623158833880329, −13.42083098749551369233588410541, −12.87356294491619490199294986028, −12.52423171505726591322290744294, −11.33347441846117682436285909974, −10.14058834798647387125061832297, −9.8048371609071174691488873381, −9.13945341258360525319266441674, −8.387856500313961028303913868541, −7.690326553135896759940051900938, −6.67153354443853023790022518029, −5.97594441286245222665161328382, −4.841165752953832862670753146568, −4.53161696573344272947816679058, −2.95449140133915441159012758731, −2.47569398901678391725117506146, −2.015494039387820360457498939298, −0.60058304817335904462049114358,
0.76772316723047924524063937616, 1.823126789000774314842738105981, 2.60018302661796686113333603520, 3.24171897351291577359377594150, 4.20805335739415668699921786539, 5.064579061571104688581631983426, 6.07514612519119449904508235847, 7.080213741548755329052846900727, 7.30606060026992179847728876215, 8.4714468829186800972349016181, 9.112860660072839933448953602525, 9.96114774853537458149410711462, 10.36647543677941962483243999059, 11.15081059525041250976993947756, 12.4766350329664063196687550173, 13.09232365566554308912677309381, 13.80987826254655707408323395366, 14.02490984136478097955730487477, 14.98339266936343518526221972780, 15.69862281675539978547516923520, 16.49888393600621192862555955262, 17.31205743761275755593930322690, 17.978078408529099798558660663704, 18.685418605365676441699213036698, 19.60918354676403861906508296448