| L(s) = 1 | + (0.302 − 0.953i)2-s + (−0.816 − 0.576i)4-s + (0.945 − 0.326i)5-s + (0.908 + 0.418i)7-s + (−0.797 + 0.603i)8-s + (−0.0249 − 0.999i)10-s + (−0.983 − 0.181i)11-s + (−0.441 − 0.897i)13-s + (0.674 − 0.738i)14-s + (0.334 + 0.942i)16-s + (0.173 + 0.984i)17-s + (−0.661 − 0.749i)19-s + (−0.960 − 0.278i)20-s + (−0.470 + 0.882i)22-s + (−0.610 − 0.792i)23-s + ⋯ |
| L(s) = 1 | + (0.302 − 0.953i)2-s + (−0.816 − 0.576i)4-s + (0.945 − 0.326i)5-s + (0.908 + 0.418i)7-s + (−0.797 + 0.603i)8-s + (−0.0249 − 0.999i)10-s + (−0.983 − 0.181i)11-s + (−0.441 − 0.897i)13-s + (0.674 − 0.738i)14-s + (0.334 + 0.942i)16-s + (0.173 + 0.984i)17-s + (−0.661 − 0.749i)19-s + (−0.960 − 0.278i)20-s + (−0.470 + 0.882i)22-s + (−0.610 − 0.792i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.00720i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.00720i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.005534901566 - 1.537255723i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.005534901566 - 1.537255723i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9137899654 - 0.7945432260i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9137899654 - 0.7945432260i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 29 | \( 1 \) |
| good | 2 | \( 1 + (0.302 - 0.953i)T \) |
| 5 | \( 1 + (0.945 - 0.326i)T \) |
| 7 | \( 1 + (0.908 + 0.418i)T \) |
| 11 | \( 1 + (-0.983 - 0.181i)T \) |
| 13 | \( 1 + (-0.441 - 0.897i)T \) |
| 17 | \( 1 + (0.173 + 0.984i)T \) |
| 19 | \( 1 + (-0.661 - 0.749i)T \) |
| 23 | \( 1 + (-0.610 - 0.792i)T \) |
| 31 | \( 1 + (0.514 - 0.857i)T \) |
| 37 | \( 1 + (0.542 - 0.840i)T \) |
| 41 | \( 1 + (-0.686 - 0.727i)T \) |
| 43 | \( 1 + (-0.189 - 0.981i)T \) |
| 47 | \( 1 + (-0.349 + 0.936i)T \) |
| 53 | \( 1 + (0.826 + 0.563i)T \) |
| 59 | \( 1 + (0.396 + 0.918i)T \) |
| 61 | \( 1 + (-0.816 + 0.576i)T \) |
| 67 | \( 1 + (-0.870 - 0.492i)T \) |
| 71 | \( 1 + (-0.797 - 0.603i)T \) |
| 73 | \( 1 + (-0.411 - 0.911i)T \) |
| 79 | \( 1 + (-0.556 - 0.830i)T \) |
| 83 | \( 1 + (0.140 + 0.990i)T \) |
| 89 | \( 1 + (-0.969 - 0.246i)T \) |
| 97 | \( 1 + (-0.528 + 0.848i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.09516067810693294281580192015, −18.83512215790149737542231417761, −18.261518184188315224469159002775, −17.775021597943925241184291324106, −17.01376544892740159841425819027, −16.47768449626148823655361576913, −15.624756215213390697695807485968, −14.678010908070258098147966111194, −14.35121303837160802101842887552, −13.583800456727462591881190311323, −13.12816135762149432100731231105, −12.0337001496836571676644988010, −11.339566345558128670691985268215, −10.07980498053376585257572888524, −9.86351856896654319102507703251, −8.71824748584755987391435439200, −8.02160908933659548193534973165, −7.25672989337584680558572555929, −6.62821428454825236371049239164, −5.72021460526899638602823053850, −4.989885019337947792732599125699, −4.48660212754025279904210263237, −3.30590601822073074123045104978, −2.34368116863064491770722944391, −1.37625566519518803255397876714,
0.42593751383914852192719646146, 1.60760033448876837534176554240, 2.34035529770033707918982150085, 2.85387236097789429736268719158, 4.24130204978541132195835566574, 4.83854755488286934971817394263, 5.690183424796812501571789741041, 6.0226554046497982808420335744, 7.59446058803923493382903372325, 8.48050516789945942877555905964, 8.90190209512856143540975783492, 10.05159840324766874459250213294, 10.46549478763126574098915673452, 11.0772916618020512370198871083, 12.19535197264649886237543267670, 12.62737843433335879799110813798, 13.39458857937398641510012316342, 13.93209414052713964772795859153, 15.04546700945948553860350714390, 15.11596416640718017841958823158, 16.559084310680061713561836771972, 17.46091488524905624419102410408, 17.85051262920092761063084622653, 18.487590725069191664149866721157, 19.29650472944260336235630519862