L(s) = 1 | + (0.976 − 0.214i)2-s + (0.908 − 0.418i)4-s + (0.189 − 0.981i)5-s + (−0.0912 − 0.995i)7-s + (0.797 − 0.603i)8-s + (−0.0249 − 0.999i)10-s + (−0.334 − 0.942i)11-s + (0.997 + 0.0664i)13-s + (−0.302 − 0.953i)14-s + (0.649 − 0.760i)16-s + (−0.173 − 0.984i)17-s + (−0.661 − 0.749i)19-s + (−0.238 − 0.971i)20-s + (−0.528 − 0.848i)22-s + (−0.991 + 0.132i)23-s + ⋯ |
L(s) = 1 | + (0.976 − 0.214i)2-s + (0.908 − 0.418i)4-s + (0.189 − 0.981i)5-s + (−0.0912 − 0.995i)7-s + (0.797 − 0.603i)8-s + (−0.0249 − 0.999i)10-s + (−0.334 − 0.942i)11-s + (0.997 + 0.0664i)13-s + (−0.302 − 0.953i)14-s + (0.649 − 0.760i)16-s + (−0.173 − 0.984i)17-s + (−0.661 − 0.749i)19-s + (−0.238 − 0.971i)20-s + (−0.528 − 0.848i)22-s + (−0.991 + 0.132i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.869 + 0.493i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.869 + 0.493i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.9269709155 - 3.510005036i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.9269709155 - 3.510005036i\) |
\(L(1)\) |
\(\approx\) |
\(1.442054462 - 1.227415594i\) |
\(L(1)\) |
\(\approx\) |
\(1.442054462 - 1.227415594i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (0.976 - 0.214i)T \) |
| 5 | \( 1 + (0.189 - 0.981i)T \) |
| 7 | \( 1 + (-0.0912 - 0.995i)T \) |
| 11 | \( 1 + (-0.334 - 0.942i)T \) |
| 13 | \( 1 + (0.997 + 0.0664i)T \) |
| 17 | \( 1 + (-0.173 - 0.984i)T \) |
| 19 | \( 1 + (-0.661 - 0.749i)T \) |
| 23 | \( 1 + (-0.991 + 0.132i)T \) |
| 31 | \( 1 + (0.485 + 0.874i)T \) |
| 37 | \( 1 + (0.542 - 0.840i)T \) |
| 41 | \( 1 + (-0.973 + 0.230i)T \) |
| 43 | \( 1 + (-0.755 + 0.655i)T \) |
| 47 | \( 1 + (-0.986 + 0.165i)T \) |
| 53 | \( 1 + (-0.826 - 0.563i)T \) |
| 59 | \( 1 + (0.993 + 0.116i)T \) |
| 61 | \( 1 + (0.908 + 0.418i)T \) |
| 67 | \( 1 + (0.861 - 0.507i)T \) |
| 71 | \( 1 + (0.797 + 0.603i)T \) |
| 73 | \( 1 + (-0.411 - 0.911i)T \) |
| 79 | \( 1 + (-0.441 + 0.897i)T \) |
| 83 | \( 1 + (-0.786 + 0.616i)T \) |
| 89 | \( 1 + (0.969 + 0.246i)T \) |
| 97 | \( 1 + (0.999 + 0.0332i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.022557951148115116981401140758, −18.96282130534568061063316631891, −18.51398063891121692247466137266, −17.655922932372768476986649922544, −16.93368877355240749870354850015, −15.837913880909948972665036484622, −15.39733052004421355491929003594, −14.81768935169057365682642590114, −14.2399296970431206514700103961, −13.23013322957461901935068630623, −12.79561737130433534108710230239, −11.85626322422480068709020070770, −11.35966001212453714384092033470, −10.34387000791143758332635297164, −9.928575647104004481468089477253, −8.44671821458670787668995531539, −8.02366937181849703610408906543, −6.92318140774125333662938478498, −6.1823363576550000917998211358, −5.891430075174694178051083798741, −4.8010450447022680736505144690, −3.86534622255545702087653695543, −3.223197498250465826407570675877, −2.1151454121739333388806816601, −1.86957400776793145978579712465,
0.386668803626972099554900278284, 1.06851075591772862598437677601, 2.03297888817237327677223048574, 3.16007478407284638909692708891, 3.86910887181102298572278198820, 4.66166234043054094021286232889, 5.28543444577204060463664125626, 6.229040575080048503050301651987, 6.79820716974435973371697833847, 7.91709643886821746300664962582, 8.55610590549226838006256270560, 9.63573660285042400625257974503, 10.35519424355440900617864590502, 11.25310100891016172822445254044, 11.617788322306972981282425848813, 12.82526487456453586053145599048, 13.20514224451750013489161343996, 13.81260298324276301645382379219, 14.31924184848939889506940319637, 15.579018114106499459124592682503, 16.167813983067616269528862729138, 16.4587473864298026298352820725, 17.45425591542812228092370597210, 18.29643231851536081533226939400, 19.36614994659911999604338651049