L(s) = 1 | + (−0.927 + 0.373i)2-s + (0.721 − 0.692i)4-s + (0.964 − 0.262i)5-s + (−0.960 + 0.278i)7-s + (−0.411 + 0.911i)8-s + (−0.797 + 0.603i)10-s + (−0.886 + 0.463i)11-s + (0.933 − 0.357i)13-s + (0.786 − 0.616i)14-s + (0.0415 − 0.999i)16-s + (0.173 − 0.984i)17-s + (−0.998 − 0.0498i)19-s + (0.514 − 0.857i)20-s + (0.649 − 0.760i)22-s + (0.744 + 0.667i)23-s + ⋯ |
L(s) = 1 | + (−0.927 + 0.373i)2-s + (0.721 − 0.692i)4-s + (0.964 − 0.262i)5-s + (−0.960 + 0.278i)7-s + (−0.411 + 0.911i)8-s + (−0.797 + 0.603i)10-s + (−0.886 + 0.463i)11-s + (0.933 − 0.357i)13-s + (0.786 − 0.616i)14-s + (0.0415 − 0.999i)16-s + (0.173 − 0.984i)17-s + (−0.998 − 0.0498i)19-s + (0.514 − 0.857i)20-s + (0.649 − 0.760i)22-s + (0.744 + 0.667i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.787 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.787 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9074831747 - 0.3126282607i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9074831747 - 0.3126282607i\) |
\(L(1)\) |
\(\approx\) |
\(0.7458300879 + 0.01609137210i\) |
\(L(1)\) |
\(\approx\) |
\(0.7458300879 + 0.01609137210i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (-0.927 + 0.373i)T \) |
| 5 | \( 1 + (0.964 - 0.262i)T \) |
| 7 | \( 1 + (-0.960 + 0.278i)T \) |
| 11 | \( 1 + (-0.886 + 0.463i)T \) |
| 13 | \( 1 + (0.933 - 0.357i)T \) |
| 17 | \( 1 + (0.173 - 0.984i)T \) |
| 19 | \( 1 + (-0.998 - 0.0498i)T \) |
| 23 | \( 1 + (0.744 + 0.667i)T \) |
| 31 | \( 1 + (0.908 + 0.418i)T \) |
| 37 | \( 1 + (0.698 - 0.715i)T \) |
| 41 | \( 1 + (-0.286 - 0.957i)T \) |
| 43 | \( 1 + (-0.710 + 0.704i)T \) |
| 47 | \( 1 + (-0.610 - 0.792i)T \) |
| 53 | \( 1 + (-0.988 + 0.149i)T \) |
| 59 | \( 1 + (0.597 + 0.802i)T \) |
| 61 | \( 1 + (0.721 + 0.692i)T \) |
| 67 | \( 1 + (-0.976 + 0.214i)T \) |
| 71 | \( 1 + (-0.411 - 0.911i)T \) |
| 73 | \( 1 + (-0.0249 - 0.999i)T \) |
| 79 | \( 1 + (-0.157 - 0.987i)T \) |
| 83 | \( 1 + (-0.870 - 0.492i)T \) |
| 89 | \( 1 + (0.980 + 0.198i)T \) |
| 97 | \( 1 + (-0.983 + 0.181i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.41140079608596272877066346922, −18.7952351613701168373229016895, −18.515619425051817789946021728279, −17.4687490329756263781075923405, −16.93303838038830150183350496064, −16.34602052461399007173301507849, −15.57369934020903732595300429160, −14.7567088989936150567017706969, −13.620385073331204634032619058973, −13.00699446691875027601472646633, −12.65583700082176338508561400096, −11.28428194262741919464131414120, −10.80011820869664404755451447033, −10.062094370394302975550696562631, −9.65167112409240931144761422801, −8.53939003402392831688651531389, −8.24552536981306293833929062052, −6.913297532908722597813905844132, −6.387221539466539793203178610094, −5.85493879829812044938712718746, −4.4349041522411748952147771567, −3.348546770985147618740762000630, −2.78129885053395857878769113461, −1.86433946373217665074010369694, −0.9091433783047085378646959972,
0.51045720185844580647516169997, 1.611881515964093972121287313360, 2.5236793378000061953214026711, 3.17468351480758065732668642370, 4.76627898775109106947368591156, 5.53606049833153399934723607227, 6.17919067792795730615971079000, 6.85813809000542438706259600266, 7.70642178509226571765150495276, 8.72926906082383438965248900419, 9.12193750835096648213884533003, 10.05409290038826611593379339419, 10.344200196809573973048254246845, 11.299895842657956470722434514493, 12.301627466009808090944103267152, 13.184240485218124221813756744300, 13.57414671625338694259425986287, 14.73214548671816519927200609691, 15.40925162723110378984796102591, 16.13308174804953345929451384391, 16.568317043010992830035220558621, 17.568773904480351934203218908980, 17.96817961671683785022752818178, 18.68445308152038052473065550718, 19.32323119465303144681349399104