| L(s) = 1 | − i·7-s + (0.5 − 0.866i)11-s + (−0.866 − 0.5i)17-s + (−0.5 + 0.866i)19-s − i·23-s + (0.5 − 0.866i)29-s + (0.5 − 0.866i)31-s + (0.866 − 0.5i)37-s + 41-s − i·43-s + (−0.866 + 0.5i)47-s − 49-s − i·53-s + (−0.5 − 0.866i)59-s + 61-s + ⋯ |
| L(s) = 1 | − i·7-s + (0.5 − 0.866i)11-s + (−0.866 − 0.5i)17-s + (−0.5 + 0.866i)19-s − i·23-s + (0.5 − 0.866i)29-s + (0.5 − 0.866i)31-s + (0.866 − 0.5i)37-s + 41-s − i·43-s + (−0.866 + 0.5i)47-s − 49-s − i·53-s + (−0.5 − 0.866i)59-s + 61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.401 - 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.401 - 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6935212963 - 1.060819489i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6935212963 - 1.060819489i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9726391243 - 0.2813847522i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9726391243 - 0.2813847522i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
| good | 7 | \( 1 - iT \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 17 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 - iT \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.866 + 0.5i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 - iT \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.866 - 0.5i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + iT \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.84169148933669478795122128984, −19.15111697339367239312503450955, −18.307446265113392726778440699308, −17.73007532748916578509026884290, −17.10361910964917438415596258892, −16.12721926683396948826576420334, −15.45412006368216540390295800786, −14.86624780657436238927993337718, −14.2397442453636731782011330495, −13.14047645649362166582121141062, −12.57471652314377884898388418869, −11.94608355404777837748680736740, −11.11432116101866669812448652601, −10.35761642131149146418718608040, −9.457987720925199137720619324, −8.75304973629533571067040406646, −8.275511446045208398609222230341, −6.94078134902031856140780863897, −6.601238881391816346935750988340, −5.60317799474330435981436004597, −4.69945156462521727823957920903, −4.12866664287937178766657984303, −2.79915763504881418148635941179, −2.28054730285173469699517869495, −1.2259548391172804330518495255,
0.4361690499774632750995400912, 1.41049708534261004211479316915, 2.49002117031462093649055013544, 3.55302499116708064226528719597, 4.13818062734382896515128198687, 4.98169002610660634322202900512, 6.19556922158126014819237011637, 6.49596068073080299655471809415, 7.74448453939302340538951941272, 8.04868236829148815504273331713, 9.26300728890723350847870535613, 9.73618283075653258906985136620, 10.7827212074291686217914352870, 11.256437592488127020140542974639, 11.9980756724637956375285178463, 13.14108119321628122083172139735, 13.507393640761315821661936722421, 14.30324659458326994004770583353, 14.940138822565316837525644880703, 16.06259500124085777917846323364, 16.37964105827472148981183705372, 17.35413422143143051693270199334, 17.7129641622349332109422297985, 18.80288834805779489846305079447, 19.45243740868814249851735189850