L(s) = 1 | + (0.866 + 0.5i)7-s − i·11-s + (−0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s + (0.5 + 0.866i)23-s + 29-s + (0.866 + 0.5i)31-s + (−0.866 − 0.5i)37-s + (0.866 − 0.5i)41-s + (0.5 − 0.866i)43-s + (−0.866 + 0.5i)47-s + (0.5 + 0.866i)49-s − 53-s − i·59-s + (−0.5 + 0.866i)61-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)7-s − i·11-s + (−0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s + (0.5 + 0.866i)23-s + 29-s + (0.866 + 0.5i)31-s + (−0.866 − 0.5i)37-s + (0.866 − 0.5i)41-s + (0.5 − 0.866i)43-s + (−0.866 + 0.5i)47-s + (0.5 + 0.866i)49-s − 53-s − i·59-s + (−0.5 + 0.866i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.135 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.135 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.210000247 + 1.055781183i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.210000247 + 1.055781183i\) |
\(L(1)\) |
\(\approx\) |
\(1.105838855 + 0.2489688878i\) |
\(L(1)\) |
\(\approx\) |
\(1.105838855 + 0.2489688878i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 - iT \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 + (0.866 + 0.5i)T \) |
| 37 | \( 1 + (-0.866 - 0.5i)T \) |
| 41 | \( 1 + (0.866 - 0.5i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.866 + 0.5i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 - iT \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.866 - 0.5i)T \) |
| 71 | \( 1 + (-0.866 + 0.5i)T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.866 - 0.5i)T \) |
| 89 | \( 1 + (0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.31338371017709606206437608086, −18.91007345850708941847327749846, −17.79034947040708445776233852239, −17.38864781926441106997013180992, −16.66042601416405795319275864244, −15.880795119356938534779135414584, −15.01737961726123754885938510129, −14.43282891357033600052682128028, −13.6671759550613337468916064437, −13.037294131336597531709040658673, −12.17430071494063224719379527314, −11.171257009300172902619263920059, −10.87843523066041356398498959784, −10.08231499481511841802360436284, −8.94232159941924614004423537090, −8.3356682619139141798016948756, −7.80794318468336249858082804423, −6.551636197420059346975601422548, −6.23926258879622664888496716129, −4.91376560635868216672591473774, −4.49015927865150209504539423248, −3.48391491774177569982614647734, −2.54018633350972251839655428328, −1.56022603243904525106828011106, −0.55564168436942081710021840077,
1.181194833690507863505091632478, 2.08140716680857604606457670334, 2.78148764494447494709485459751, 4.0320986063950168886499175717, 4.761721013309998691436180682630, 5.37317730288513799768700522852, 6.40971702546005663396276066164, 7.2050473542874442112054085267, 7.93388762749343933741074156399, 8.77643584688600819550711991915, 9.39396385615126291992333574152, 10.35373871660120072926726736956, 11.00520926840235096489997576292, 11.934301548134275652754511844413, 12.32134399698771226147335754096, 13.279106199567881733817823194342, 14.14035299846255898940655112292, 14.68907805601259088669637786554, 15.547422993585956049099917034788, 15.92406275707062048951047533264, 17.22179395785157232059099960961, 17.56972046214687999703548541487, 18.20071134837590406470401538260, 19.092181633881053402563641334696, 19.69365087355563990958837592995