L(s) = 1 | + (−0.965 + 0.258i)3-s + (−0.965 − 0.258i)5-s + (0.866 − 0.5i)9-s + (−0.258 − 0.965i)11-s + (0.707 + 0.707i)13-s + 15-s + (−0.5 + 0.866i)17-s + (−0.258 + 0.965i)19-s + (−0.866 + 0.5i)23-s + (0.866 + 0.5i)25-s + (−0.707 + 0.707i)27-s + (0.707 + 0.707i)29-s + (−0.5 + 0.866i)31-s + (0.5 + 0.866i)33-s + (0.965 + 0.258i)37-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)3-s + (−0.965 − 0.258i)5-s + (0.866 − 0.5i)9-s + (−0.258 − 0.965i)11-s + (0.707 + 0.707i)13-s + 15-s + (−0.5 + 0.866i)17-s + (−0.258 + 0.965i)19-s + (−0.866 + 0.5i)23-s + (0.866 + 0.5i)25-s + (−0.707 + 0.707i)27-s + (0.707 + 0.707i)29-s + (−0.5 + 0.866i)31-s + (0.5 + 0.866i)33-s + (0.965 + 0.258i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0612 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0612 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3869047408 + 0.3638855996i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3869047408 + 0.3638855996i\) |
\(L(1)\) |
\(\approx\) |
\(0.6159974145 + 0.1234872899i\) |
\(L(1)\) |
\(\approx\) |
\(0.6159974145 + 0.1234872899i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.965 + 0.258i)T \) |
| 5 | \( 1 + (-0.965 - 0.258i)T \) |
| 11 | \( 1 + (-0.258 - 0.965i)T \) |
| 13 | \( 1 + (0.707 + 0.707i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.258 + 0.965i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (0.707 + 0.707i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.965 + 0.258i)T \) |
| 41 | \( 1 - iT \) |
| 43 | \( 1 + (-0.707 + 0.707i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.258 + 0.965i)T \) |
| 59 | \( 1 + (-0.258 - 0.965i)T \) |
| 61 | \( 1 + (-0.258 + 0.965i)T \) |
| 67 | \( 1 + (0.965 - 0.258i)T \) |
| 71 | \( 1 + iT \) |
| 73 | \( 1 + (0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.707 - 0.707i)T \) |
| 89 | \( 1 + (0.866 - 0.5i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.3703794182235067573490844057, −25.198440106802748488706771996508, −24.1429676014483281060764567344, −23.28157547262027196591743122295, −22.755018602534147804223718554846, −21.86853343860761454924964614879, −20.4650558408402474224417754311, −19.69297954359552739013916146450, −18.34518515285526080371799957923, −18.004766107464800626980932962645, −16.722138656102530988407439119029, −15.71800549628981074393919834147, −15.15068023980811892425343986248, −13.51041857161698687723744953975, −12.57712781577122008471947767896, −11.637714057984607096667303811874, −10.904772277156074717248666989525, −9.84026751802842040231108274653, −8.225747641329302674815686656866, −7.27400661980440764487695658167, −6.37416189533686679207222455935, −4.98976625221995516519195564907, −4.08375581402747598166376033251, −2.40493167969685122656072466855, −0.490859043382098110695154980226,
1.32291913797968397723292197233, 3.55939308795689647986232300332, 4.35556513526874192797794232046, 5.67817209336504438450305857541, 6.60301081577777860440529000195, 7.96719325401412839912247190394, 8.93817352615297392963889574338, 10.45256288390782617613423184444, 11.18319624083657165089037765822, 12.04641324206030542173231881612, 12.96691678719686333982642735241, 14.32568473482160313533193629314, 15.66947648951778431222904335955, 16.17118184714952057528698368319, 17.01082453666166884112554787888, 18.269748967272262549384083595231, 19.02187881369530943631589593352, 20.12235573446820390721470094949, 21.328823377026296974643594393776, 21.94400114504503115536017596268, 23.26027174617856702643151519155, 23.64521401831387535916236275019, 24.46271294294493727312065836693, 25.95413514670836200711270977612, 26.956418672393812718154739572061