| L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.991 + 0.130i)3-s + (0.866 − 0.5i)4-s + (0.923 − 0.382i)5-s + (−0.991 + 0.130i)6-s + (−0.130 − 0.991i)7-s + (−0.707 + 0.707i)8-s + (0.965 + 0.258i)9-s + (−0.793 + 0.608i)10-s + (−0.608 − 0.793i)11-s + (0.923 − 0.382i)12-s + (0.382 + 0.923i)14-s + (0.965 − 0.258i)15-s + (0.5 − 0.866i)16-s − 18-s + (0.258 − 0.965i)19-s + ⋯ |
| L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.991 + 0.130i)3-s + (0.866 − 0.5i)4-s + (0.923 − 0.382i)5-s + (−0.991 + 0.130i)6-s + (−0.130 − 0.991i)7-s + (−0.707 + 0.707i)8-s + (0.965 + 0.258i)9-s + (−0.793 + 0.608i)10-s + (−0.608 − 0.793i)11-s + (0.923 − 0.382i)12-s + (0.382 + 0.923i)14-s + (0.965 − 0.258i)15-s + (0.5 − 0.866i)16-s − 18-s + (0.258 − 0.965i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.278 - 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.278 - 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.465577171 - 1.100534536i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.465577171 - 1.100534536i\) |
| \(L(1)\) |
\(\approx\) |
\(1.102466194 - 0.2340824947i\) |
| \(L(1)\) |
\(\approx\) |
\(1.102466194 - 0.2340824947i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 13 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (-0.965 + 0.258i)T \) |
| 3 | \( 1 + (0.991 + 0.130i)T \) |
| 5 | \( 1 + (0.923 - 0.382i)T \) |
| 7 | \( 1 + (-0.130 - 0.991i)T \) |
| 11 | \( 1 + (-0.608 - 0.793i)T \) |
| 19 | \( 1 + (0.258 - 0.965i)T \) |
| 23 | \( 1 + (-0.608 - 0.793i)T \) |
| 29 | \( 1 + (-0.130 + 0.991i)T \) |
| 31 | \( 1 + (-0.382 - 0.923i)T \) |
| 37 | \( 1 + (-0.991 - 0.130i)T \) |
| 41 | \( 1 + (-0.793 + 0.608i)T \) |
| 43 | \( 1 + (0.965 + 0.258i)T \) |
| 47 | \( 1 + iT \) |
| 53 | \( 1 + (-0.707 - 0.707i)T \) |
| 59 | \( 1 + (0.965 + 0.258i)T \) |
| 61 | \( 1 + (-0.130 - 0.991i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.608 - 0.793i)T \) |
| 73 | \( 1 + (0.923 - 0.382i)T \) |
| 79 | \( 1 + (0.382 - 0.923i)T \) |
| 83 | \( 1 + (-0.707 - 0.707i)T \) |
| 89 | \( 1 + (0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.793 + 0.608i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.29034451072756056192033306934, −25.48815735291837968442534691636, −25.20633076790164427479669542833, −24.158041248362948406969029933452, −22.4242404043074898683866553015, −21.32029716130139059451807148138, −20.86573229626123846742029946547, −19.78298250495565757144358427770, −18.726150704243387051277143119679, −18.262175567666784034429026091415, −17.33799256206407547753829092988, −15.8491620742969573380559805584, −15.1823843957103970227100426855, −14.04264468057291228432365228702, −12.84378553207047943789285159014, −11.99900851400136871393382352274, −10.36877260752587321778712979683, −9.74063297050068395995039911226, −8.892266635980880538755341255541, −7.857714812892515690919976487133, −6.834585061470837279209567223131, −5.57203277799090145951689504519, −3.47629327278961621212334101375, −2.35060534012320757828106671381, −1.72947154050593304651257211976,
0.69963445545040496881094646614, 1.99775069787047242307702241238, 3.18265514283913861000425244164, 4.90645268288324004123699387568, 6.33999436482271973523072015097, 7.434217128437204167374131144221, 8.427103720758770740354946235816, 9.29870452441101202502175848896, 10.17512581285761156146778194617, 10.95567393014724956672289945813, 12.834670497167701202302368152982, 13.75905851917538831694425702867, 14.52950924427168028935742679504, 15.890147887111837668518971221179, 16.52523615960713752628998952234, 17.60609985755023431692413503414, 18.52143316481282180749633380573, 19.5267390029229676359285631082, 20.41462584473686145760759019760, 20.92767225297628237702346694274, 22.083565271790308470984618140746, 24.00677575942574350011019913827, 24.25284496261043325111998173618, 25.51123665313308884800708692154, 26.10926551528069530437817064582