| L(s) = 1 | + (0.5 + 0.866i)2-s + (0.866 − 0.5i)3-s + (−0.5 + 0.866i)4-s + i·5-s + (0.866 + 0.5i)6-s + (0.866 + 0.5i)7-s − 8-s + (0.5 − 0.866i)9-s + (−0.866 + 0.5i)10-s + (−0.866 + 0.5i)11-s + i·12-s + i·14-s + (0.5 + 0.866i)15-s + (−0.5 − 0.866i)16-s + 18-s + (0.5 − 0.866i)19-s + ⋯ |
| L(s) = 1 | + (0.5 + 0.866i)2-s + (0.866 − 0.5i)3-s + (−0.5 + 0.866i)4-s + i·5-s + (0.866 + 0.5i)6-s + (0.866 + 0.5i)7-s − 8-s + (0.5 − 0.866i)9-s + (−0.866 + 0.5i)10-s + (−0.866 + 0.5i)11-s + i·12-s + i·14-s + (0.5 + 0.866i)15-s + (−0.5 − 0.866i)16-s + 18-s + (0.5 − 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.115 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.115 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.280282061 + 1.438239017i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.280282061 + 1.438239017i\) |
| \(L(1)\) |
\(\approx\) |
\(1.394016325 + 0.8864847345i\) |
| \(L(1)\) |
\(\approx\) |
\(1.394016325 + 0.8864847345i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 13 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 + iT \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.866 + 0.5i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (0.866 - 0.5i)T \) |
| 31 | \( 1 + iT \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + (-0.866 + 0.5i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.866 + 0.5i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.866 - 0.5i)T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 - iT \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.866 - 0.5i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.60700702373639560777664851850, −25.17184389454975497966041819449, −24.166860265682120950106904839071, −23.647416988421216273060234011447, −22.18897915183334418718483675633, −21.241503133821454804238533501152, −20.59338866135547618464213009363, −20.18216826414223916332460516116, −19.02479764140268185257577565128, −18.00806066843955089064026244129, −16.56719453402907677491383677640, −15.60859107524199144172694372168, −14.43386686658501379771551561422, −13.736478707781224277327469691595, −12.89950632455601657824061522899, −11.72901425296229553089227668583, −10.566081163315266259816813432698, −9.77974812182433899500676493794, −8.56492789690545578548946797893, −7.88136211953418245359334378910, −5.63293756525036942332743730921, −4.67594247183675862836359657953, −3.88937028230928148155832204934, −2.51152326943936640775693870472, −1.27443352922073422691716219910,
2.22710461444014247519790670075, 3.13762842271383813815850574324, 4.53000372059129142805672681406, 5.84216831971170029132442074130, 7.06977674429355484753653103166, 7.728467638366659391196378966586, 8.643566647871889697092790762654, 9.92375728656843349316129170030, 11.5072283654404687342458166052, 12.5294941576182922390992634253, 13.713702548246395512803079970739, 14.27840004568300863858886813589, 15.26742342982911142173496169865, 15.71183979850089763117412360616, 17.76003655981172559570377827472, 17.94420859640256446425259798870, 18.98116662315117047744841545403, 20.32629382720692327806774902686, 21.367224893735411415880127367377, 22.06343642673156920853556153987, 23.433379452191837268653775513536, 23.88774970371963944599704868801, 25.075373391785299251950275475602, 25.59658918677232697547137561700, 26.54779605009325697222109663298