| L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.258 + 0.965i)3-s + (0.5 − 0.866i)4-s + (0.707 + 0.707i)5-s + (−0.258 − 0.965i)6-s + (0.258 + 0.965i)7-s + i·8-s + (−0.866 − 0.5i)9-s + (−0.965 − 0.258i)10-s + (0.965 + 0.258i)11-s + (0.707 + 0.707i)12-s + (−0.707 − 0.707i)14-s + (−0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s + 18-s + (0.866 + 0.5i)19-s + ⋯ |
| L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.258 + 0.965i)3-s + (0.5 − 0.866i)4-s + (0.707 + 0.707i)5-s + (−0.258 − 0.965i)6-s + (0.258 + 0.965i)7-s + i·8-s + (−0.866 − 0.5i)9-s + (−0.965 − 0.258i)10-s + (0.965 + 0.258i)11-s + (0.707 + 0.707i)12-s + (−0.707 − 0.707i)14-s + (−0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s + 18-s + (0.866 + 0.5i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.754 + 0.656i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.754 + 0.656i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2996473897 + 0.8011185604i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2996473897 + 0.8011185604i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5881412169 + 0.5402502819i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5881412169 + 0.5402502819i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 13 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (-0.258 + 0.965i)T \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
| 7 | \( 1 + (0.258 + 0.965i)T \) |
| 11 | \( 1 + (0.965 + 0.258i)T \) |
| 19 | \( 1 + (0.866 + 0.5i)T \) |
| 23 | \( 1 + (0.965 + 0.258i)T \) |
| 29 | \( 1 + (0.258 - 0.965i)T \) |
| 31 | \( 1 + (-0.707 - 0.707i)T \) |
| 37 | \( 1 + (-0.258 + 0.965i)T \) |
| 41 | \( 1 + (-0.965 - 0.258i)T \) |
| 43 | \( 1 + (-0.866 - 0.5i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (-0.866 - 0.5i)T \) |
| 61 | \( 1 + (0.258 + 0.965i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.965 - 0.258i)T \) |
| 73 | \( 1 + (0.707 + 0.707i)T \) |
| 79 | \( 1 + (-0.707 + 0.707i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.965 + 0.258i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.1705993011725731509373277123, −25.07833087068947549244081615924, −24.61853344797890222141970790942, −23.55424449467454415621971814341, −22.27989264460916585001307017028, −21.27734818634580946150578092127, −20.0361605742982663570324162312, −19.81327266107177046546674027718, −18.438815900224730201609067311855, −17.6516525338272793788075990159, −16.945474205694752787968136661023, −16.339058549158481163009845925726, −14.28901089195497405621195803277, −13.37948653447295470900007202438, −12.53684123016191287731277846291, −11.51854696867329507542733480397, −10.61411766177713779722767920658, −9.32250784644293453492642174112, −8.49430471077274887629087330239, −7.28821081373196712420441690463, −6.51220923656493615834323784552, −4.95525991854501238593007788621, −3.25675778436377984651806961649, −1.66199420222675109989530054947, −0.965469774738972061689834049775,
1.7875679331951910491950664721, 3.19122240320025457616203048575, 5.05076794896585598546803164410, 5.90423148891091344581521190450, 6.83315564965768397846959321795, 8.384451456907083150600881449835, 9.443639400238894485295231117490, 9.897488673371553722178605804683, 11.15361865640319662126797803792, 11.834481444764358286083231853549, 13.90674938958304197740903071260, 14.9062592295639456331528382597, 15.29778229976560019081736395643, 16.60062249802810757673968774952, 17.338039755773753533089312092194, 18.19329834793107692656302360910, 19.07872789164054835157269941997, 20.33866455918226386412974809831, 21.26555327377080962551081478715, 22.2422499472944302124138880321, 22.94197987909300188642709766407, 24.449635505059151478254942485644, 25.29550904029332912988022497709, 25.90812425035798620338209660259, 27.05321677227675677456903030291