| L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.608 + 0.793i)3-s + (−0.866 − 0.5i)4-s + (0.923 − 0.382i)5-s + (0.608 + 0.793i)6-s + (−0.793 + 0.608i)7-s + (−0.707 + 0.707i)8-s + (−0.258 − 0.965i)9-s + (−0.130 − 0.991i)10-s + (0.991 − 0.130i)11-s + (0.923 − 0.382i)12-s + (0.382 + 0.923i)14-s + (−0.258 + 0.965i)15-s + (0.5 + 0.866i)16-s − 18-s + (−0.965 + 0.258i)19-s + ⋯ |
| L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.608 + 0.793i)3-s + (−0.866 − 0.5i)4-s + (0.923 − 0.382i)5-s + (0.608 + 0.793i)6-s + (−0.793 + 0.608i)7-s + (−0.707 + 0.707i)8-s + (−0.258 − 0.965i)9-s + (−0.130 − 0.991i)10-s + (0.991 − 0.130i)11-s + (0.923 − 0.382i)12-s + (0.382 + 0.923i)14-s + (−0.258 + 0.965i)15-s + (0.5 + 0.866i)16-s − 18-s + (−0.965 + 0.258i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.673 - 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.673 - 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4776949901 - 1.081492284i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4776949901 - 1.081492284i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8404777303 - 0.4065469004i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8404777303 - 0.4065469004i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 13 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (0.258 - 0.965i)T \) |
| 3 | \( 1 + (-0.608 + 0.793i)T \) |
| 5 | \( 1 + (0.923 - 0.382i)T \) |
| 7 | \( 1 + (-0.793 + 0.608i)T \) |
| 11 | \( 1 + (0.991 - 0.130i)T \) |
| 19 | \( 1 + (-0.965 + 0.258i)T \) |
| 23 | \( 1 + (0.991 - 0.130i)T \) |
| 29 | \( 1 + (-0.793 - 0.608i)T \) |
| 31 | \( 1 + (-0.382 - 0.923i)T \) |
| 37 | \( 1 + (0.608 - 0.793i)T \) |
| 41 | \( 1 + (-0.130 - 0.991i)T \) |
| 43 | \( 1 + (-0.258 - 0.965i)T \) |
| 47 | \( 1 + iT \) |
| 53 | \( 1 + (-0.707 - 0.707i)T \) |
| 59 | \( 1 + (-0.258 - 0.965i)T \) |
| 61 | \( 1 + (-0.793 + 0.608i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.991 - 0.130i)T \) |
| 73 | \( 1 + (0.923 - 0.382i)T \) |
| 79 | \( 1 + (0.382 - 0.923i)T \) |
| 83 | \( 1 + (-0.707 - 0.707i)T \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.130 - 0.991i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.29956061245538311523417259682, −25.34358089041324699027698688847, −24.98032254575128649839310647092, −23.75144559794964602973949890519, −23.0105296568710132269118367128, −22.26554994837726941498932058931, −21.51274188502946992753262766174, −19.7896783502059751652963808719, −18.76281348673735188868860464852, −17.88206943736420382137428965979, −16.887804493474722145906231207579, −16.682778656791926239450890601, −15.01732408838054243092163415122, −14.0601287353691973677742643159, −13.206264702455562989844864631193, −12.600308076335226253226270658699, −11.098695660159137736985975019413, −9.850084917281508947574691869341, −8.78095667990824040439107911250, −7.22720901783970151389629136086, −6.64731576533378589963300675418, −5.93100658718829081247903830704, −4.657423245097742861866182940161, −3.097876131243724461631368576557, −1.266963158646853132484338199955,
0.42252541689404388839504288904, 2.01503712177827922214086178684, 3.41260567785797096738831524755, 4.50572312474836096014629561801, 5.691760966371564712261478804264, 6.30868525391845993021310202996, 8.97230971231600429855297652096, 9.31121702733307264693862240710, 10.30247917080553230505726373001, 11.3000968383456561547443150950, 12.36112793064608632949850157848, 13.07668724031440892443865263, 14.36703556792379073055918316188, 15.270337104506737492147066235827, 16.71347735912923506244358043986, 17.28967808365502481697361443270, 18.48870773468636413931057652946, 19.44744387685452620149836311714, 20.6503706633846710401192333757, 21.2784548407656721075079486888, 22.22145764345634084616752153989, 22.54933121244376691820456673909, 23.8089258495196193180475571205, 25.05100658148435095966190786196, 26.06670006612742210168946469775