| L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.608 + 0.793i)3-s + (−0.866 − 0.5i)4-s + (−0.923 + 0.382i)5-s + (−0.608 − 0.793i)6-s + (0.793 − 0.608i)7-s + (0.707 − 0.707i)8-s + (−0.258 − 0.965i)9-s + (−0.130 − 0.991i)10-s + (−0.991 + 0.130i)11-s + (0.923 − 0.382i)12-s + (0.382 + 0.923i)14-s + (0.258 − 0.965i)15-s + (0.5 + 0.866i)16-s + 18-s + (0.965 − 0.258i)19-s + ⋯ |
| L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.608 + 0.793i)3-s + (−0.866 − 0.5i)4-s + (−0.923 + 0.382i)5-s + (−0.608 − 0.793i)6-s + (0.793 − 0.608i)7-s + (0.707 − 0.707i)8-s + (−0.258 − 0.965i)9-s + (−0.130 − 0.991i)10-s + (−0.991 + 0.130i)11-s + (0.923 − 0.382i)12-s + (0.382 + 0.923i)14-s + (0.258 − 0.965i)15-s + (0.5 + 0.866i)16-s + 18-s + (0.965 − 0.258i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.523 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.523 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4053599935 + 0.7247116925i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4053599935 + 0.7247116925i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5139456800 + 0.3921647823i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5139456800 + 0.3921647823i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 13 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (-0.258 + 0.965i)T \) |
| 3 | \( 1 + (-0.608 + 0.793i)T \) |
| 5 | \( 1 + (-0.923 + 0.382i)T \) |
| 7 | \( 1 + (0.793 - 0.608i)T \) |
| 11 | \( 1 + (-0.991 + 0.130i)T \) |
| 19 | \( 1 + (0.965 - 0.258i)T \) |
| 23 | \( 1 + (0.991 - 0.130i)T \) |
| 29 | \( 1 + (-0.793 - 0.608i)T \) |
| 31 | \( 1 + (0.382 + 0.923i)T \) |
| 37 | \( 1 + (-0.608 + 0.793i)T \) |
| 41 | \( 1 + (0.130 + 0.991i)T \) |
| 43 | \( 1 + (-0.258 - 0.965i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.707 - 0.707i)T \) |
| 59 | \( 1 + (0.258 + 0.965i)T \) |
| 61 | \( 1 + (-0.793 + 0.608i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.991 + 0.130i)T \) |
| 73 | \( 1 + (-0.923 + 0.382i)T \) |
| 79 | \( 1 + (0.382 - 0.923i)T \) |
| 83 | \( 1 + (0.707 + 0.707i)T \) |
| 89 | \( 1 + (0.866 - 0.5i)T \) |
| 97 | \( 1 + (-0.130 + 0.991i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.21516397677551420397163615919, −24.773756861318199090175160882668, −23.971151478550131936236656281232, −23.11494579932455023749382904816, −22.28408843692539089771044294390, −21.08707668141333897603286642579, −20.330078676638196864970596088190, −19.130677340060470695196886379210, −18.59290311805343939486327262144, −17.75326251604057689425581473557, −16.737684635992237901717953089361, −15.59304890958327714843511884837, −14.13407571485703543720962862642, −12.9355884913974886147303482958, −12.30932497438534695125552844666, −11.35255780751805976460419568567, −10.85740444072403861051680526168, −9.17534410299256648898603531119, −8.03574332703591669366304601500, −7.5188542996265660158458409421, −5.472144530060587779653744561246, −4.7343222706916658757568028230, −3.098945774297048292914162719814, −1.77374939163726927893842485342, −0.54572369493088951459369409060,
0.75144511218907808715123670946, 3.44369582387785349158488888678, 4.64079134452126436754579336874, 5.27829612367562292396214143499, 6.80607871643649187455056804214, 7.65622954919830537507490444757, 8.680818233515473494717613372130, 10.070228540436274435196991784106, 10.81118306128469573909431929173, 11.80740823712949216603285580270, 13.36370351383114405410057426235, 14.603129252820837024622487126087, 15.30874718726258385397620526439, 16.04565614134231816973356395699, 16.97337083860282877307031919723, 17.88637926324249127360698574446, 18.693771302913230761836043820880, 20.04559809507008588323983709212, 21.04019836575447338981933675902, 22.27879291465328493237001284126, 23.12867824255195188587418060289, 23.62718470014718098988477791811, 24.52851965820076864354295545884, 26.046880934116053612710391565887, 26.71417990975474635255623291829