| L(s) = 1 | + (−0.781 + 0.623i)2-s + (0.222 − 0.974i)4-s + (0.433 + 0.900i)8-s + (−0.365 + 0.930i)11-s + (0.930 + 0.365i)13-s + (−0.900 − 0.433i)16-s + (−0.294 + 0.955i)17-s + (0.5 + 0.866i)19-s + (−0.294 − 0.955i)22-s + (−0.680 + 0.733i)23-s + (−0.955 + 0.294i)26-s + (0.955 + 0.294i)29-s + 31-s + (0.974 − 0.222i)32-s + (−0.365 − 0.930i)34-s + ⋯ |
| L(s) = 1 | + (−0.781 + 0.623i)2-s + (0.222 − 0.974i)4-s + (0.433 + 0.900i)8-s + (−0.365 + 0.930i)11-s + (0.930 + 0.365i)13-s + (−0.900 − 0.433i)16-s + (−0.294 + 0.955i)17-s + (0.5 + 0.866i)19-s + (−0.294 − 0.955i)22-s + (−0.680 + 0.733i)23-s + (−0.955 + 0.294i)26-s + (0.955 + 0.294i)29-s + 31-s + (0.974 − 0.222i)32-s + (−0.365 − 0.930i)34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1952072507 + 0.8252882824i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1952072507 + 0.8252882824i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6393541155 + 0.3472695592i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6393541155 + 0.3472695592i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (-0.781 + 0.623i)T \) |
| 11 | \( 1 + (-0.365 + 0.930i)T \) |
| 13 | \( 1 + (0.930 + 0.365i)T \) |
| 17 | \( 1 + (-0.294 + 0.955i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.680 + 0.733i)T \) |
| 29 | \( 1 + (0.955 + 0.294i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (0.680 + 0.733i)T \) |
| 41 | \( 1 + (-0.826 - 0.563i)T \) |
| 43 | \( 1 + (0.563 + 0.826i)T \) |
| 47 | \( 1 + (-0.781 + 0.623i)T \) |
| 53 | \( 1 + (-0.680 + 0.733i)T \) |
| 59 | \( 1 + (-0.900 - 0.433i)T \) |
| 61 | \( 1 + (-0.222 - 0.974i)T \) |
| 67 | \( 1 - iT \) |
| 71 | \( 1 + (0.222 - 0.974i)T \) |
| 73 | \( 1 + (-0.930 + 0.365i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (0.930 - 0.365i)T \) |
| 89 | \( 1 + (-0.988 - 0.149i)T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.42430694053887651683664468481, −18.617843903767157308793287964877, −18.09918642400218860309375909277, −17.54273791595229386938255947271, −16.49656876021579689097209118843, −15.9940830951502239576093524396, −15.46088508056978583071738004129, −14.067805319165379295167429009829, −13.49763173648642600069164465471, −12.86491162657813073844405614334, −11.75655083649009914720332920288, −11.418982349192437934635192165813, −10.54140867891463327378854284831, −9.967322391505535606597304854580, −8.96042986605372772586589473360, −8.46714164452445809637150585906, −7.742888349532263119688280476053, −6.79728986692050411742348214883, −6.03674633357725598844437065227, −4.90159241056230943800288529025, −3.980497039271431622265165705369, −2.9868893936705869958961741678, −2.53336776876182051976147037218, −1.20067214400979473373504944462, −0.4117463756175622386612517358,
1.308138333385050686013016556847, 1.83719633827770655474945467894, 3.09317146128188322917036396116, 4.27300702016554479750060667741, 5.00944402882632605353715271954, 6.170778669240283137108152832022, 6.39337533114382469314811772003, 7.62093105093647502122314128459, 8.0377763615636884516052086119, 8.86739048657864454460182865769, 9.753955020200236122140612448193, 10.2490854012890793184204065149, 11.06931171060741447187051543647, 11.89010388463180559964586084620, 12.771706848961230672913170018165, 13.77967904593571558611160867839, 14.289431683083916496030341131700, 15.33016137124874813925874364818, 15.6538720020018454012228008695, 16.45035238374096414333663826883, 17.25296381678371911264764922035, 17.85749745955159536110299411489, 18.45344547793529943291754835718, 19.17918828934438447035804724091, 19.93304186937819477015876734425