L(s) = 1 | + (0.433 − 0.900i)2-s + (−0.623 − 0.781i)4-s + (−0.974 + 0.222i)8-s + (0.0747 + 0.997i)11-s + (−0.997 + 0.0747i)13-s + (−0.222 + 0.974i)16-s + (0.930 − 0.365i)17-s + (−0.5 − 0.866i)19-s + (0.930 + 0.365i)22-s + (0.149 + 0.988i)23-s + (−0.365 + 0.930i)26-s + (−0.365 − 0.930i)29-s − 31-s + (0.781 + 0.623i)32-s + (0.0747 − 0.997i)34-s + ⋯ |
L(s) = 1 | + (0.433 − 0.900i)2-s + (−0.623 − 0.781i)4-s + (−0.974 + 0.222i)8-s + (0.0747 + 0.997i)11-s + (−0.997 + 0.0747i)13-s + (−0.222 + 0.974i)16-s + (0.930 − 0.365i)17-s + (−0.5 − 0.866i)19-s + (0.930 + 0.365i)22-s + (0.149 + 0.988i)23-s + (−0.365 + 0.930i)26-s + (−0.365 − 0.930i)29-s − 31-s + (0.781 + 0.623i)32-s + (0.0747 − 0.997i)34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.972 + 0.234i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.972 + 0.234i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.149427517 + 0.1365951122i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.149427517 + 0.1365951122i\) |
\(L(1)\) |
\(\approx\) |
\(0.9760982256 - 0.3798705209i\) |
\(L(1)\) |
\(\approx\) |
\(0.9760982256 - 0.3798705209i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.433 - 0.900i)T \) |
| 11 | \( 1 + (0.0747 + 0.997i)T \) |
| 13 | \( 1 + (-0.997 + 0.0747i)T \) |
| 17 | \( 1 + (0.930 - 0.365i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.149 + 0.988i)T \) |
| 29 | \( 1 + (-0.365 - 0.930i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + (0.149 - 0.988i)T \) |
| 41 | \( 1 + (0.733 - 0.680i)T \) |
| 43 | \( 1 + (-0.680 + 0.733i)T \) |
| 47 | \( 1 + (-0.433 + 0.900i)T \) |
| 53 | \( 1 + (0.149 + 0.988i)T \) |
| 59 | \( 1 + (-0.222 + 0.974i)T \) |
| 61 | \( 1 + (-0.623 + 0.781i)T \) |
| 67 | \( 1 + iT \) |
| 71 | \( 1 + (0.623 + 0.781i)T \) |
| 73 | \( 1 + (0.997 + 0.0747i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (0.997 + 0.0747i)T \) |
| 89 | \( 1 + (0.826 + 0.563i)T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.658331234369429319051864633348, −18.65538397250382179135083588235, −18.40084004349729176024858699289, −17.19046995522634639126154952642, −16.6601272874227160505601134871, −16.34709595097302485874427171946, −15.20791889526813346695973668876, −14.58103961615289042746746369250, −14.20678478041033628924160818216, −13.19316062086407326899070458244, −12.54939384383962748582769282124, −11.95883528273325776055479202545, −10.91328575824054038762947252071, −10.028004128855414889979849002093, −9.18917224121471813946440122875, −8.301735412576828135033077018764, −7.85999920078726756577728903716, −6.865381746460684192765381575492, −6.20146504538582465635525234720, −5.383072742924155124251037830258, −4.75855399603986415896687173238, −3.63576957223085324040749700048, −3.1561398850093543405311603565, −1.8783089454917046548719122114, −0.36539589647998118274337282757,
1.02977801611699598199020443412, 2.090782280824455661048778616759, 2.684139250354521746422184381779, 3.738643797615833369332359665259, 4.50622556998933389088506653504, 5.211142102460411628927658681856, 5.97871223580228922858489721175, 7.150425988145694075053840863804, 7.723960787705790603971030315257, 9.10323779251291128973577540672, 9.50205213415617369833551147268, 10.21422045875491349673288088587, 11.07350813558370560289977295892, 11.791949601039485177076159925921, 12.455237903862912702559845803101, 13.03596524660171100307642096654, 13.87304030303768330783708213696, 14.717525167559216764672373322098, 15.06245955429899851768707194347, 16.04271769022686247165404897912, 17.17326945267599441174017394797, 17.638727994477592212831858957299, 18.46423238438528366568780323761, 19.29188489240590255191745149647, 19.775023571433570908398307668399