| L(s) = 1 | + (0.900 + 0.433i)2-s + (0.623 + 0.781i)4-s + (0.222 + 0.974i)8-s + (0.0747 + 0.997i)11-s + (−0.0747 − 0.997i)13-s + (−0.222 + 0.974i)16-s + (−0.365 − 0.930i)17-s + (−0.5 − 0.866i)19-s + (−0.365 + 0.930i)22-s + (0.988 − 0.149i)23-s + (0.365 − 0.930i)26-s + (0.365 + 0.930i)29-s + 31-s + (−0.623 + 0.781i)32-s + (0.0747 − 0.997i)34-s + ⋯ |
| L(s) = 1 | + (0.900 + 0.433i)2-s + (0.623 + 0.781i)4-s + (0.222 + 0.974i)8-s + (0.0747 + 0.997i)11-s + (−0.0747 − 0.997i)13-s + (−0.222 + 0.974i)16-s + (−0.365 − 0.930i)17-s + (−0.5 − 0.866i)19-s + (−0.365 + 0.930i)22-s + (0.988 − 0.149i)23-s + (0.365 − 0.930i)26-s + (0.365 + 0.930i)29-s + 31-s + (−0.623 + 0.781i)32-s + (0.0747 − 0.997i)34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.311 + 0.950i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.311 + 0.950i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.432430871 + 1.761974940i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.432430871 + 1.761974940i\) |
| \(L(1)\) |
\(\approx\) |
\(1.723918164 + 0.6589502371i\) |
| \(L(1)\) |
\(\approx\) |
\(1.723918164 + 0.6589502371i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (0.900 + 0.433i)T \) |
| 11 | \( 1 + (0.0747 + 0.997i)T \) |
| 13 | \( 1 + (-0.0747 - 0.997i)T \) |
| 17 | \( 1 + (-0.365 - 0.930i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.988 - 0.149i)T \) |
| 29 | \( 1 + (0.365 + 0.930i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (0.988 + 0.149i)T \) |
| 41 | \( 1 + (-0.733 + 0.680i)T \) |
| 43 | \( 1 + (0.733 + 0.680i)T \) |
| 47 | \( 1 + (0.900 + 0.433i)T \) |
| 53 | \( 1 + (0.988 - 0.149i)T \) |
| 59 | \( 1 + (-0.222 + 0.974i)T \) |
| 61 | \( 1 + (0.623 - 0.781i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (0.623 + 0.781i)T \) |
| 73 | \( 1 + (-0.0747 + 0.997i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (-0.0747 + 0.997i)T \) |
| 89 | \( 1 + (0.826 + 0.563i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.34735068622770008006424029217, −19.23816244089676019261045622847, −18.49291327658146984094858486968, −17.195449586152401830448610812102, −16.678597790396457526191125852191, −15.824896670133842150381412214797, −15.092336863865206852601450024798, −14.43532490307555143127050003570, −13.63651206213771468271026040150, −13.227211220320620908822308056129, −12.166178436183080653960130298626, −11.73853898226715589903224284353, −10.81491293267551192015213120004, −10.36134675943143918879617234396, −9.29560886307637052700084227655, −8.55362000395995748206769776549, −7.5323688367184345197670637179, −6.46521465687929985232536144014, −6.10341456856155435634627095885, −5.15075308797806105413128217356, −4.18322917157980039806912588897, −3.71045096792932791481690788057, −2.637567327278458499590096835630, −1.869398706266796087299678031943, −0.82456954559277952904851831216,
1.08810027464909288155291406683, 2.56844203567377472773349211225, 2.82173675449129074150830371611, 4.1084702699453920704712618037, 4.80062776472172014985812948253, 5.34863694048051100655775849861, 6.47716603896326027475807061765, 7.01018617885173983919543477855, 7.75150610150036836983699322166, 8.61667109990771073865594204681, 9.494479367644124982992533229756, 10.511521994692634609233602272010, 11.22093801756426358547456754851, 12.038848272325835977272215194633, 12.77595151356679202717256004468, 13.26372200155074327248029409001, 14.08944872610167609813027000302, 15.02610484248182634080808157468, 15.26996580150437484000393650979, 16.10473384225913522949827580672, 16.931134164268383842009279241796, 17.646760142403747303019459323768, 18.13293173193120213019250680924, 19.3806573716492938541834767676, 20.15901350410619691396610571380