| L(s) = 1 | + (0.680 − 0.733i)2-s + (−0.0747 − 0.997i)4-s + (−0.781 − 0.623i)8-s + (0.222 − 0.974i)11-s + (0.680 − 0.733i)13-s + (−0.988 + 0.149i)16-s + (0.997 + 0.0747i)17-s + (0.5 + 0.866i)19-s + (−0.563 − 0.826i)22-s + (−0.433 + 0.900i)23-s + (−0.0747 − 0.997i)26-s + (0.826 + 0.563i)29-s + (−0.5 − 0.866i)31-s + (−0.563 + 0.826i)32-s + (0.733 − 0.680i)34-s + ⋯ |
| L(s) = 1 | + (0.680 − 0.733i)2-s + (−0.0747 − 0.997i)4-s + (−0.781 − 0.623i)8-s + (0.222 − 0.974i)11-s + (0.680 − 0.733i)13-s + (−0.988 + 0.149i)16-s + (0.997 + 0.0747i)17-s + (0.5 + 0.866i)19-s + (−0.563 − 0.826i)22-s + (−0.433 + 0.900i)23-s + (−0.0747 − 0.997i)26-s + (0.826 + 0.563i)29-s + (−0.5 − 0.866i)31-s + (−0.563 + 0.826i)32-s + (0.733 − 0.680i)34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.624 - 0.780i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.624 - 0.780i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.066180559 - 2.218145347i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.066180559 - 2.218145347i\) |
| \(L(1)\) |
\(\approx\) |
\(1.269741872 - 0.9255923544i\) |
| \(L(1)\) |
\(\approx\) |
\(1.269741872 - 0.9255923544i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (0.680 - 0.733i)T \) |
| 11 | \( 1 + (0.222 - 0.974i)T \) |
| 13 | \( 1 + (0.680 - 0.733i)T \) |
| 17 | \( 1 + (0.997 + 0.0747i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.433 + 0.900i)T \) |
| 29 | \( 1 + (0.826 + 0.563i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.563 - 0.826i)T \) |
| 41 | \( 1 + (-0.365 - 0.930i)T \) |
| 43 | \( 1 + (0.930 + 0.365i)T \) |
| 47 | \( 1 + (0.680 - 0.733i)T \) |
| 53 | \( 1 + (-0.563 - 0.826i)T \) |
| 59 | \( 1 + (0.365 - 0.930i)T \) |
| 61 | \( 1 + (0.0747 - 0.997i)T \) |
| 67 | \( 1 + (-0.866 + 0.5i)T \) |
| 71 | \( 1 + (0.900 + 0.433i)T \) |
| 73 | \( 1 + (-0.294 + 0.955i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.680 + 0.733i)T \) |
| 89 | \( 1 + (-0.733 + 0.680i)T \) |
| 97 | \( 1 + (-0.866 + 0.5i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.21178762706359091477633386338, −19.27131261776096344557954905711, −18.235567172282759336381159796116, −17.842770217982928930627650995120, −16.863235343582865628812586289820, −16.36980467808306137418490592030, −15.58772515945217235693244255737, −14.954003194193170803199218616623, −14.12283297245409135569524382876, −13.71728071881639251529065029100, −12.716550308397929676454446571996, −12.1313658252587397000609256748, −11.50082423312679069652883901167, −10.45703889017154688254184705248, −9.47568117396856713802329766327, −8.79794395600047359966592025655, −7.90295408570909279504762356755, −7.19110495229247084764218940573, −6.47966790677863355481820610136, −5.77852702185332500772828685056, −4.69945542093320614000070058597, −4.32270825423494596693467382058, −3.25078920410004550630842116814, −2.45092985345312462725472405250, −1.2221398975442323081445395205,
0.72267810328713408726627487641, 1.4977021061145728531413891477, 2.61581466826623511084074648551, 3.64389999353898358385705703469, 3.76142830464374706254011533588, 5.28249913329171473790055544693, 5.65811257673072028192818828776, 6.39152008762613712937997457484, 7.59954745064213442914828135198, 8.38035320619171130680159190069, 9.346225584037888336421961488321, 10.05196926611699804629689481201, 10.82114228999668217772925900931, 11.423424307320278240149013215277, 12.23035064240334204733771115167, 12.839114393534936611793168332906, 13.744829766289022257538308673866, 14.15753070873119555972186858606, 14.93874554931927136320629762268, 15.885052757095425145969076639262, 16.32470557964742385324939907378, 17.46777508139182598319995369580, 18.28845668373274048113160298092, 18.89788626423939998519447668147, 19.50746547949028908893629080602