L(s) = 1 | + (−0.0747 − 0.997i)2-s + (−0.988 + 0.149i)4-s + (0.955 + 0.294i)5-s + (0.222 + 0.974i)8-s + (0.222 − 0.974i)10-s + (−0.0747 − 0.997i)11-s + (−0.826 + 0.563i)13-s + (0.955 − 0.294i)16-s + (0.623 − 0.781i)17-s − 19-s + (−0.988 − 0.149i)20-s + (−0.988 + 0.149i)22-s + (0.988 − 0.149i)23-s + (0.826 + 0.563i)25-s + (0.623 + 0.781i)26-s + ⋯ |
L(s) = 1 | + (−0.0747 − 0.997i)2-s + (−0.988 + 0.149i)4-s + (0.955 + 0.294i)5-s + (0.222 + 0.974i)8-s + (0.222 − 0.974i)10-s + (−0.0747 − 0.997i)11-s + (−0.826 + 0.563i)13-s + (0.955 − 0.294i)16-s + (0.623 − 0.781i)17-s − 19-s + (−0.988 − 0.149i)20-s + (−0.988 + 0.149i)22-s + (0.988 − 0.149i)23-s + (0.826 + 0.563i)25-s + (0.623 + 0.781i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0818 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0818 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9745105110 - 0.8977753723i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9745105110 - 0.8977753723i\) |
\(L(1)\) |
\(\approx\) |
\(0.9586565136 - 0.5177897445i\) |
\(L(1)\) |
\(\approx\) |
\(0.9586565136 - 0.5177897445i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.0747 - 0.997i)T \) |
| 5 | \( 1 + (0.955 + 0.294i)T \) |
| 11 | \( 1 + (-0.0747 - 0.997i)T \) |
| 13 | \( 1 + (-0.826 + 0.563i)T \) |
| 17 | \( 1 + (0.623 - 0.781i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (0.988 - 0.149i)T \) |
| 29 | \( 1 + (0.988 + 0.149i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.623 - 0.781i)T \) |
| 41 | \( 1 + (0.955 + 0.294i)T \) |
| 43 | \( 1 + (0.955 - 0.294i)T \) |
| 47 | \( 1 + (0.0747 + 0.997i)T \) |
| 53 | \( 1 + (-0.623 - 0.781i)T \) |
| 59 | \( 1 + (-0.733 - 0.680i)T \) |
| 61 | \( 1 + (0.988 + 0.149i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.623 - 0.781i)T \) |
| 73 | \( 1 + (0.900 - 0.433i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.826 + 0.563i)T \) |
| 89 | \( 1 + (-0.900 + 0.433i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.45145559237454721158504607538, −23.43644727090785183874330255645, −22.7817033771335850253645140277, −21.729696126321687342438345877898, −21.116555933649891840526498450212, −19.84551825153016117838745536190, −18.93852971442337315197326155504, −17.7846090838294355803907125094, −17.339489765918176820201874838469, −16.68333703254517732719997520100, −15.431528841346110536095631318752, −14.77344981357862253800860010922, −13.96185257408777754683938713437, −12.81979500059493996905163665282, −12.468302629956864590270124345867, −10.48054206831600950124554090158, −9.90720069158956722903517741401, −8.96588012041062234885549071662, −8.00914964511891710906413901203, −6.97776498653670807383957726498, −6.08750999023126057456667976537, −5.12549261407360602175889264663, −4.37109230736715380485196547258, −2.68811156765797684059904275652, −1.2414291239009771206501975805,
0.933668113512090970256146832994, 2.3318492464256377548170544982, 2.9692746296514318283772319093, 4.37952311041300951348849565104, 5.37733468289215918956195726393, 6.428737594361278452917964693196, 7.79074078026266756266475279989, 9.00610708360144984379085214756, 9.60348324155772109395852336438, 10.60585971076257417435984421865, 11.29656822731302426719055332524, 12.40187261819016872779763761193, 13.24125159162514049680788096840, 14.118360679179862177857076576678, 14.6618999589997547957512609061, 16.34169331522576448376030773158, 17.167047606764403676908180630987, 17.90515069038013701828775173821, 19.03260662870255409163248597557, 19.23894454826923081074200483439, 20.72559884278293418914219140103, 21.23113272809695541634824750710, 21.91546070011824824273339460882, 22.72088239618027073389294058030, 23.691701812711350321385291056969