L(s) = 1 | + (−0.505 − 0.863i)2-s + (−0.734 − 0.678i)3-s + (−0.489 + 0.871i)4-s + (−0.977 + 0.209i)5-s + (−0.214 + 0.976i)6-s + (−0.692 + 0.721i)7-s + (0.999 − 0.0180i)8-s + (0.0781 + 0.996i)9-s + (0.674 + 0.738i)10-s + (0.197 − 0.980i)11-s + (0.951 − 0.307i)12-s + (0.996 + 0.0781i)13-s + (0.972 + 0.232i)14-s + (0.859 + 0.510i)15-s + (−0.520 − 0.853i)16-s + (−0.238 − 0.971i)17-s + ⋯ |
L(s) = 1 | + (−0.505 − 0.863i)2-s + (−0.734 − 0.678i)3-s + (−0.489 + 0.871i)4-s + (−0.977 + 0.209i)5-s + (−0.214 + 0.976i)6-s + (−0.692 + 0.721i)7-s + (0.999 − 0.0180i)8-s + (0.0781 + 0.996i)9-s + (0.674 + 0.738i)10-s + (0.197 − 0.980i)11-s + (0.951 − 0.307i)12-s + (0.996 + 0.0781i)13-s + (0.972 + 0.232i)14-s + (0.859 + 0.510i)15-s + (−0.520 − 0.853i)16-s + (−0.238 − 0.971i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.658 - 0.752i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.658 - 0.752i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4854690367 - 0.2203084290i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4854690367 - 0.2203084290i\) |
\(L(1)\) |
\(\approx\) |
\(0.4599127430 - 0.2141428512i\) |
\(L(1)\) |
\(\approx\) |
\(0.4599127430 - 0.2141428512i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 37 | \( 1 \) |
| 59 | \( 1 \) |
good | 2 | \( 1 + (-0.505 - 0.863i)T \) |
| 3 | \( 1 + (-0.734 - 0.678i)T \) |
| 5 | \( 1 + (-0.977 + 0.209i)T \) |
| 7 | \( 1 + (-0.692 + 0.721i)T \) |
| 11 | \( 1 + (0.197 - 0.980i)T \) |
| 13 | \( 1 + (0.996 + 0.0781i)T \) |
| 17 | \( 1 + (-0.238 - 0.971i)T \) |
| 19 | \( 1 + (0.226 + 0.973i)T \) |
| 23 | \( 1 + (0.995 - 0.0901i)T \) |
| 29 | \( 1 + (-0.941 + 0.336i)T \) |
| 31 | \( 1 + (-0.998 - 0.0541i)T \) |
| 41 | \( 1 + (0.996 - 0.0841i)T \) |
| 43 | \( 1 + (0.319 - 0.947i)T \) |
| 47 | \( 1 + (-0.530 + 0.847i)T \) |
| 53 | \( 1 + (0.609 + 0.792i)T \) |
| 61 | \( 1 + (-0.937 + 0.347i)T \) |
| 67 | \( 1 + (-0.324 + 0.945i)T \) |
| 71 | \( 1 + (-0.788 + 0.614i)T \) |
| 73 | \( 1 + (-0.725 - 0.687i)T \) |
| 79 | \( 1 + (-0.0481 - 0.998i)T \) |
| 83 | \( 1 + (-0.0300 + 0.999i)T \) |
| 89 | \( 1 + (-0.167 - 0.985i)T \) |
| 97 | \( 1 + (-0.284 + 0.958i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.82053935619432771733370096353, −19.12012312353976239037948270882, −18.136625473728710937418352707431, −17.55936280996507201979192199910, −16.67140344811258974299511985623, −16.464768568331039725494434411571, −15.42313803891766215243890656695, −15.31051642512727869069583447113, −14.4314909351743904294381127498, −13.07296768316476634674920511160, −12.83046371111022039178520780434, −11.4582699361248517549489185598, −10.937818328740065125215311812501, −10.28476769642555115611473074129, −9.31982776904525565951637513049, −8.930955348871132183612652785232, −7.77978068430728138017858233063, −7.06519432413072747803846138831, −6.497455951528842247639135415732, −5.60035015872898811608322485752, −4.64145734064935833221454387713, −4.11316081090247316938620451161, −3.37105908607405808696961480812, −1.44761633090505235398439708096, −0.483248151128687699423671259,
0.58890161466644635186144771009, 1.4906905061927621303747009936, 2.70722580772468431478135891741, 3.348008417528715749069810834895, 4.1869546711940975378315399262, 5.37565676185656919420107719392, 6.12934830911422324496811932979, 7.15229952727058092636120205330, 7.6931834732927389354591259271, 8.74453049687219282825759165631, 9.08240421597938054453334069653, 10.391917263782899807385784647791, 11.10139204527229666468484352301, 11.4924375580304092724112899589, 12.18720284059173085639888985343, 12.85358399206588291143442368885, 13.473450508536058860782879444499, 14.40193389807846591298752981100, 15.67900826197790724751342126799, 16.41988116403467878801606829628, 16.56022378432077875103864914802, 17.853532786795932705875914315342, 18.55464807332680317027193612141, 18.8227001543594520649048521351, 19.33728581777173934377189097545