L(s) = 1 | + (0.700 + 0.713i)2-s + (−0.436 + 0.899i)3-s + (−0.0180 + 0.999i)4-s + (−0.891 + 0.452i)5-s + (−0.947 + 0.319i)6-s + (0.935 − 0.353i)7-s + (−0.725 + 0.687i)8-s + (−0.619 − 0.785i)9-s + (−0.947 − 0.319i)10-s + (0.468 − 0.883i)11-s + (−0.891 − 0.452i)12-s + (−0.619 + 0.785i)13-s + (0.907 + 0.419i)14-s + (−0.0180 − 0.999i)15-s + (−0.999 − 0.0361i)16-s + (0.935 + 0.353i)17-s + ⋯ |
L(s) = 1 | + (0.700 + 0.713i)2-s + (−0.436 + 0.899i)3-s + (−0.0180 + 0.999i)4-s + (−0.891 + 0.452i)5-s + (−0.947 + 0.319i)6-s + (0.935 − 0.353i)7-s + (−0.725 + 0.687i)8-s + (−0.619 − 0.785i)9-s + (−0.947 − 0.319i)10-s + (0.468 − 0.883i)11-s + (−0.891 − 0.452i)12-s + (−0.619 + 0.785i)13-s + (0.907 + 0.419i)14-s + (−0.0180 − 0.999i)15-s + (−0.999 − 0.0361i)16-s + (0.935 + 0.353i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.417 + 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.417 + 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.053803282 + 1.644649885i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.053803282 + 1.644649885i\) |
\(L(1)\) |
\(\approx\) |
\(0.9755787525 + 0.8577358515i\) |
\(L(1)\) |
\(\approx\) |
\(0.9755787525 + 0.8577358515i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 37 | \( 1 \) |
| 59 | \( 1 \) |
good | 2 | \( 1 + (0.700 + 0.713i)T \) |
| 3 | \( 1 + (-0.436 + 0.899i)T \) |
| 5 | \( 1 + (-0.891 + 0.452i)T \) |
| 7 | \( 1 + (0.935 - 0.353i)T \) |
| 11 | \( 1 + (0.468 - 0.883i)T \) |
| 13 | \( 1 + (-0.619 + 0.785i)T \) |
| 17 | \( 1 + (0.935 + 0.353i)T \) |
| 19 | \( 1 + (0.336 - 0.941i)T \) |
| 23 | \( 1 + (0.796 - 0.605i)T \) |
| 29 | \( 1 + (0.267 + 0.963i)T \) |
| 31 | \( 1 + (0.647 - 0.762i)T \) |
| 41 | \( 1 + (0.126 - 0.992i)T \) |
| 43 | \( 1 + (0.468 + 0.883i)T \) |
| 47 | \( 1 + (0.0541 + 0.998i)T \) |
| 53 | \( 1 + (0.197 - 0.980i)T \) |
| 61 | \( 1 + (-0.968 + 0.250i)T \) |
| 67 | \( 1 + (0.958 + 0.284i)T \) |
| 71 | \( 1 + (0.837 - 0.546i)T \) |
| 73 | \( 1 + (0.907 + 0.419i)T \) |
| 79 | \( 1 + (0.997 + 0.0721i)T \) |
| 83 | \( 1 + (-0.674 + 0.738i)T \) |
| 89 | \( 1 + (-0.968 - 0.250i)T \) |
| 97 | \( 1 + (0.907 - 0.419i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.674015418859990206009388643825, −18.858662410160015655498759564960, −18.33510151007236506524541070931, −17.44144118040410420409393796199, −16.83408533019273622746624297511, −15.64524867849613837056251120073, −15.03262278304263093048508570285, −14.35138765096909268566045914013, −13.60541620008961676080733231493, −12.588765865533203271452392497199, −12.1468974685461053291685593069, −11.85455064277478074742314226302, −11.045126850328080337859025418452, −10.18481780836478414596497702693, −9.24283792989530393048025372239, −8.1186121861518710608544751620, −7.62038720033511339995288334306, −6.77095545507407995737694456587, −5.58570111568077478729777100730, −5.14197776786960069382018765649, −4.42884179058993878982995626272, −3.35754627959622051223406062720, −2.42949544769045475606061263472, −1.455358469494517736392628025067, −0.85263087116811972505594278463,
0.80822600456949067922794287325, 2.661530728455782995593760585148, 3.43691288183896566060380616418, 4.19290521616540639807213018789, 4.74021606425464299317900262279, 5.47450311446809781635821578501, 6.50424234137380905077520215965, 7.107313693710290618783874501472, 8.02800399688078162341138391540, 8.676071518524237810653804369418, 9.54114551851897902283381867270, 10.876645989515476861897914351469, 11.170392363498766115184506735697, 11.88959339326509973448223575700, 12.5152881768420284841442693075, 13.90211381949876034248061387593, 14.36782996260346205778082293762, 14.88486301603902996174267703417, 15.58331821210247876710159327200, 16.37614684107272170874418342503, 16.84398055598135918339726718657, 17.4708166887520081678833281453, 18.38479434123789478603128014359, 19.331488796550406150947482723331, 20.15126502008660024376996773153