| L(s) = 1 | + (−0.197 + 0.980i)2-s + (0.874 + 0.484i)3-s + (−0.922 − 0.386i)4-s + (0.619 − 0.785i)5-s + (−0.647 + 0.762i)6-s + (−0.0901 − 0.995i)7-s + (0.561 − 0.827i)8-s + (0.530 + 0.847i)9-s + (0.647 + 0.762i)10-s + (0.267 + 0.963i)11-s + (−0.619 − 0.785i)12-s + (−0.530 + 0.847i)13-s + (0.994 + 0.108i)14-s + (0.922 − 0.386i)15-s + (0.700 + 0.713i)16-s + (0.0901 − 0.995i)17-s + ⋯ |
| L(s) = 1 | + (−0.197 + 0.980i)2-s + (0.874 + 0.484i)3-s + (−0.922 − 0.386i)4-s + (0.619 − 0.785i)5-s + (−0.647 + 0.762i)6-s + (−0.0901 − 0.995i)7-s + (0.561 − 0.827i)8-s + (0.530 + 0.847i)9-s + (0.647 + 0.762i)10-s + (0.267 + 0.963i)11-s + (−0.619 − 0.785i)12-s + (−0.530 + 0.847i)13-s + (0.994 + 0.108i)14-s + (0.922 − 0.386i)15-s + (0.700 + 0.713i)16-s + (0.0901 − 0.995i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.275 + 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.275 + 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.236265122 + 1.640725072i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.236265122 + 1.640725072i\) |
| \(L(1)\) |
\(\approx\) |
\(1.136554044 + 0.6899820000i\) |
| \(L(1)\) |
\(\approx\) |
\(1.136554044 + 0.6899820000i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 37 | \( 1 \) |
| 59 | \( 1 \) |
| good | 2 | \( 1 + (-0.197 + 0.980i)T \) |
| 3 | \( 1 + (0.874 + 0.484i)T \) |
| 5 | \( 1 + (0.619 - 0.785i)T \) |
| 7 | \( 1 + (-0.0901 - 0.995i)T \) |
| 11 | \( 1 + (0.267 + 0.963i)T \) |
| 13 | \( 1 + (-0.530 + 0.847i)T \) |
| 17 | \( 1 + (0.0901 - 0.995i)T \) |
| 19 | \( 1 + (0.302 + 0.953i)T \) |
| 23 | \( 1 + (0.161 + 0.986i)T \) |
| 29 | \( 1 + (0.947 + 0.319i)T \) |
| 31 | \( 1 + (-0.976 + 0.214i)T \) |
| 41 | \( 1 + (0.935 - 0.353i)T \) |
| 43 | \( 1 + (-0.267 + 0.963i)T \) |
| 47 | \( 1 + (-0.370 + 0.928i)T \) |
| 53 | \( 1 + (0.336 + 0.941i)T \) |
| 61 | \( 1 + (-0.750 - 0.661i)T \) |
| 67 | \( 1 + (0.997 + 0.0721i)T \) |
| 71 | \( 1 + (0.989 - 0.143i)T \) |
| 73 | \( 1 + (-0.994 - 0.108i)T \) |
| 79 | \( 1 + (0.0180 - 0.999i)T \) |
| 83 | \( 1 + (0.837 + 0.546i)T \) |
| 89 | \( 1 + (-0.750 + 0.661i)T \) |
| 97 | \( 1 + (0.994 - 0.108i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.62188974819583618723989947561, −18.78312605545555924836413405532, −18.41579450088207335060331969589, −17.73186491019963964649231439681, −17.032528045147286075373164238, −15.75331982913852831788824640141, −14.776790129062116075829392498755, −14.496186893331839462781882555912, −13.51931713140461115233947945307, −13.01269353713525078281577682881, −12.31568755754562977412996073748, −11.497202978832181421330181892607, −10.637996318648092457799962464151, −9.96199035187609050207362596159, −9.15543742431772558879201761401, −8.59110640898056362103305128854, −7.92043860287939744279509501770, −6.84798328930128689294864175197, −5.989101122364544193928665806060, −5.14451959305974445676469298119, −3.81743586204952354012918778949, −3.06076773897582865361015041044, −2.54717078934544084319738202946, −1.90120925216029789397928329553, −0.70752017279184483616513483715,
1.16746394614408101809774660321, 1.89502542091707123337997532316, 3.30722372656914153011507390255, 4.36129663435597544771824362471, 4.64880489398625791839994177094, 5.53404686116622076467461234850, 6.70730514283601052719131785349, 7.402119587653386582503715211280, 7.93350490773665127218368660385, 8.99870684073551288951964629760, 9.65912373876465917909627392152, 9.749676618711929375366210253777, 10.81523983911905824781479573057, 12.23612060887934715060982576170, 12.97446328307859166171423130959, 13.84004865659134280965046471574, 14.14523069936677932978956684986, 14.76223728093829693871761651242, 15.863445025419375099237789043304, 16.30050545432226382750816195939, 16.91441552697098894066744493271, 17.606411840657689135201675664506, 18.356115871594589558824978468016, 19.41463047324536601213598099073, 19.91534386571911788962791233915