L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.309 + 0.951i)5-s + (0.809 + 0.587i)7-s + (−0.309 + 0.951i)8-s + (−0.809 + 0.587i)10-s + (−0.809 − 0.587i)11-s + (0.809 − 0.587i)13-s + (0.309 + 0.951i)14-s + (−0.809 + 0.587i)16-s + (−0.809 + 0.587i)17-s + (−0.809 − 0.587i)19-s − 20-s + (−0.309 − 0.951i)22-s + 23-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.309 + 0.951i)5-s + (0.809 + 0.587i)7-s + (−0.309 + 0.951i)8-s + (−0.809 + 0.587i)10-s + (−0.809 − 0.587i)11-s + (0.809 − 0.587i)13-s + (0.309 + 0.951i)14-s + (−0.809 + 0.587i)16-s + (−0.809 + 0.587i)17-s + (−0.809 − 0.587i)19-s − 20-s + (−0.309 − 0.951i)22-s + 23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 213 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.387 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 213 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.387 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9724552421 + 1.464266941i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9724552421 + 1.464266941i\) |
\(L(1)\) |
\(\approx\) |
\(1.257468712 + 0.9042342031i\) |
\(L(1)\) |
\(\approx\) |
\(1.257468712 + 0.9042342031i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 71 | \( 1 \) |
good | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 5 | \( 1 + (-0.309 + 0.951i)T \) |
| 7 | \( 1 + (0.809 + 0.587i)T \) |
| 11 | \( 1 + (-0.809 - 0.587i)T \) |
| 13 | \( 1 + (0.809 - 0.587i)T \) |
| 17 | \( 1 + (-0.809 + 0.587i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (-0.309 + 0.951i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + (0.309 - 0.951i)T \) |
| 47 | \( 1 + (-0.809 + 0.587i)T \) |
| 53 | \( 1 + (0.309 - 0.951i)T \) |
| 59 | \( 1 + (0.309 - 0.951i)T \) |
| 61 | \( 1 + (0.809 - 0.587i)T \) |
| 67 | \( 1 + (-0.309 - 0.951i)T \) |
| 73 | \( 1 + (-0.809 - 0.587i)T \) |
| 79 | \( 1 + (0.309 - 0.951i)T \) |
| 83 | \( 1 + (-0.309 + 0.951i)T \) |
| 89 | \( 1 + (-0.309 + 0.951i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.4959635205400107636788915217, −25.02908368794321590606953622631, −24.27421518931232773565110103344, −23.372663727490443788599210220107, −22.92319870970990982054571915812, −21.15554851342983997185984967090, −20.95367550493910359733751953470, −20.09216631925106390308236718416, −19.03686543596571040124788433466, −17.89457664078189440506315160507, −16.658427035981748896523631663514, −15.63500828038515708704905496705, −14.72311433443854591491447473876, −13.4546543696545505437294612251, −12.97429002132887788781466917407, −11.67988531551358328563992737855, −11.02384216527775178400837626038, −9.79540770920958530096652246882, −8.54729720600531697819205355211, −7.31788518600381026462416533670, −5.86618516798062680681272186641, −4.58330878548896046234180667524, −4.20234515682517628559009251172, −2.36829343828179947364339820183, −1.10957310722456592943960326247,
2.36212595339828452169149132894, 3.34407598573173471455123755364, 4.68074309974696781984249793108, 5.80548728659607730940126857380, 6.76387569291070185955410747873, 7.98555152264706998268633068008, 8.67703382818388337418983857368, 10.92339404718938614661989056861, 11.122206318943115686608079106874, 12.625916676730574544072410396509, 13.50836112072397360164053776441, 14.653566523108854638099432175397, 15.27679649175870323190486003127, 16.03245088061790455581522877092, 17.52671270867231147276141447032, 18.16910440300502466287856281560, 19.32155515550474369252905136119, 20.75393675951822323415877111811, 21.51449336047018210925776477117, 22.27809046886727927347726838140, 23.36165513550649086591136174881, 23.92643375804140239164056046418, 25.028287666884663157090109970589, 25.90796649957028365193699044628, 26.6997561830793684027945826035