| L(s) = 1 | − i·3-s + (−0.866 − 0.5i)5-s − 9-s + (0.866 + 0.5i)11-s + (−0.866 − 0.5i)13-s + (−0.5 + 0.866i)15-s + 17-s + 23-s + (0.5 + 0.866i)25-s − i·27-s + (−0.866 − 0.5i)29-s + (−0.5 + 0.866i)31-s + (0.5 − 0.866i)33-s + (−0.866 + 0.5i)37-s + (−0.5 + 0.866i)39-s + ⋯ |
| L(s) = 1 | − i·3-s + (−0.866 − 0.5i)5-s − 9-s + (0.866 + 0.5i)11-s + (−0.866 − 0.5i)13-s + (−0.5 + 0.866i)15-s + 17-s + 23-s + (0.5 + 0.866i)25-s − i·27-s + (−0.866 − 0.5i)29-s + (−0.5 + 0.866i)31-s + (0.5 − 0.866i)33-s + (−0.866 + 0.5i)37-s + (−0.5 + 0.866i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2128 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.685 + 0.728i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2128 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.685 + 0.728i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5682721609 + 0.2455598304i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5682721609 + 0.2455598304i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7533491547 - 0.2287676751i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7533491547 - 0.2287676751i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
| good | 3 | \( 1 - iT \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (-0.866 - 0.5i)T \) |
| 17 | \( 1 + T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (-0.866 - 0.5i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.866 + 0.5i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (-0.866 + 0.5i)T \) |
| 59 | \( 1 - iT \) |
| 61 | \( 1 - iT \) |
| 67 | \( 1 + (-0.866 + 0.5i)T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.64028468564054604487088933958, −19.173390217798075875537316382527, −18.449236119932457132693953255602, −17.24888100693182723093355267332, −16.69566877050393161436725609116, −16.20868590490814225140194863456, −15.25436138608947531436136852981, −14.546728601278560939241550653703, −14.44602775103842192849624065830, −13.17695838903177448205315916619, −12.0391917706258682043811468765, −11.59530486337724732345005389164, −10.93768722294824081462706901387, −10.121431670029135309818716074871, −9.356862249582859394865186043514, −8.69760686979375099452742403570, −7.76673737956554355330015534871, −7.00744399264898861672655014660, −6.10210964012660041348294522833, −5.1093192041468720606138666166, −4.42889809458081534640953351320, −3.40260463005494503784276364137, −3.22340324245453832531189708710, −1.79733705260254089120493149148, −0.23743091319563474736225515508,
1.0251240017176040697484389173, 1.74332386185236004338732557047, 2.988882071199405375117858599672, 3.658569654832872131133607876922, 4.86018587562282579155586071240, 5.42724355885278484592748827523, 6.59804049454765645523705790619, 7.27342877030469464513611200552, 7.798064056012893147412637377898, 8.64197810314012735090495548252, 9.339316473449602149878790863, 10.35356272465568916513235690162, 11.45174511920287238527672720494, 11.9162911598963894821464329186, 12.58917003437283189304325177087, 13.05251573318184477808275083586, 14.17162814647988215849148857825, 14.76335449421105832720454593202, 15.41056869292526600688728118898, 16.565045277677785728251788786188, 17.04288084431004857329951759758, 17.63593527545030246469831270252, 18.71184126118721915067265927945, 19.147091835771208152386906564043, 19.8633610886086345782766678536