L(s) = 1 | + (−0.866 + 0.5i)3-s + 5-s + (0.866 + 0.5i)7-s + (0.5 − 0.866i)9-s + (−0.5 − 0.866i)11-s + (−0.866 + 0.5i)15-s + (0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s − 21-s + (0.5 + 0.866i)23-s + 25-s + i·27-s + (0.866 − 0.5i)29-s − i·31-s + (0.866 + 0.5i)33-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)3-s + 5-s + (0.866 + 0.5i)7-s + (0.5 − 0.866i)9-s + (−0.5 − 0.866i)11-s + (−0.866 + 0.5i)15-s + (0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s − 21-s + (0.5 + 0.866i)23-s + 25-s + i·27-s + (0.866 − 0.5i)29-s − i·31-s + (0.866 + 0.5i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.913 + 0.406i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.913 + 0.406i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.121874590 + 0.2382332461i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.121874590 + 0.2382332461i\) |
\(L(1)\) |
\(\approx\) |
\(1.031392472 + 0.1472831237i\) |
\(L(1)\) |
\(\approx\) |
\(1.031392472 + 0.1472831237i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (0.866 - 0.5i)T \) |
| 31 | \( 1 - iT \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.866 + 0.5i)T \) |
| 43 | \( 1 + (0.866 + 0.5i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.866 - 0.5i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.866 - 0.5i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (0.866 - 0.5i)T \) |
| 97 | \( 1 + (-0.866 - 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.69034650162647826324746024796, −25.58688365761183548271605549385, −24.756642407903903040792387877980, −23.73391406606973223176405074262, −23.15564889377895152062573727945, −21.88016714125440220920745133572, −21.233768513257696934446826689512, −20.146696575065606585473428458486, −18.81063807741233942109165365185, −17.76194376166489873993162110509, −17.44407464353920529084167780078, −16.46875649312290960262361974607, −15.01476505838777988204576233666, −13.96606537179948830244848906931, −12.97525401761473292830702189521, −12.18454776272636455172903951243, −10.66817703031284732110098017012, −10.41004362384369411081368071501, −8.748585174777904578281604075555, −7.43499171747751970234400491979, −6.53880115536218351917951280443, −5.32413777010439055154854746541, −4.54857480724010740576398996885, −2.33990282091787618216307895099, −1.27830579462007425073076978759,
1.3264397751997313192077514541, 2.914309564393433369278902152518, 4.640479270504461283345283927454, 5.545582701330099384576936349044, 6.24208994868982283080315576631, 7.88273689746341401600325899421, 9.18050169253983942564911068371, 10.12478431598719873574676317052, 11.11040814926611434651970579960, 11.9534659075740590579712965475, 13.21730898891879753288634764538, 14.285644014377111719380472650398, 15.32312585208377110007905570443, 16.4383934305011322439809534294, 17.23336408979837195725461083143, 18.1335275673050800411986186561, 18.82589477157399314062731931960, 20.76888403906694671806166518225, 21.1834967013115164996973917297, 21.92916553716692210478048628342, 22.97729883408824640352440789239, 23.992357205652160207731409803385, 24.861675034666661038828194217286, 25.86138333764942529879476200438, 27.130036499633553812277988951476