L(s) = 1 | + (0.866 − 0.5i)3-s − i·5-s + (0.5 + 0.866i)7-s + (0.5 − 0.866i)9-s + (0.866 + 0.5i)11-s + (0.866 − 0.5i)13-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)17-s + i·19-s + (0.866 + 0.5i)21-s + (0.5 + 0.866i)23-s − 25-s − i·27-s + (−0.866 − 0.5i)29-s + (−0.5 − 0.866i)31-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)3-s − i·5-s + (0.5 + 0.866i)7-s + (0.5 − 0.866i)9-s + (0.866 + 0.5i)11-s + (0.866 − 0.5i)13-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)17-s + i·19-s + (0.866 + 0.5i)21-s + (0.5 + 0.866i)23-s − 25-s − i·27-s + (−0.866 − 0.5i)29-s + (−0.5 − 0.866i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2032 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.880 - 0.474i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2032 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.880 - 0.474i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.683386271 - 0.6776966777i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.683386271 - 0.6776966777i\) |
\(L(1)\) |
\(\approx\) |
\(1.631240806 - 0.3159659518i\) |
\(L(1)\) |
\(\approx\) |
\(1.631240806 - 0.3159659518i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 127 | \( 1 \) |
good | 3 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (0.866 - 0.5i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + iT \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.866 - 0.5i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.866 + 0.5i)T \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 + (0.866 + 0.5i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (0.866 + 0.5i)T \) |
| 59 | \( 1 + (0.866 + 0.5i)T \) |
| 61 | \( 1 + iT \) |
| 67 | \( 1 + (0.866 - 0.5i)T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.866 - 0.5i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.98513028645734051183478373332, −19.374151646676930655173828084702, −18.555881400120095236580928252070, −17.97459219752257919625683271300, −16.960393884148463028634967851118, −16.24845158694484264244969779328, −15.55206107317948326195363292284, −14.59574616565908297736796226754, −14.25795452878307431092052319581, −13.67318326343151115079421951623, −12.92688503521711384996581296106, −11.3447836424735987320874788754, −11.14258235841702938169712502437, −10.45698254495342675524239987049, −9.38540538549742561200298466185, −8.915311480266135863411412954806, −8.00453363377046459810492565486, −6.99414623975581496348455599524, −6.78228790440217506739864328343, −5.41383231198054341389026377219, −4.29929411655262070605139918601, −3.856733463435400060668250494411, −2.96836901108421842502979620639, −2.156457758591156620946869362485, −1.01638011159607885646224110075,
1.15050945785760901716817536468, 1.68751219824408529342957600021, 2.544135274947005156632549117039, 3.904021387981839490429962394296, 4.17073468672435792425138338385, 5.68127662061326325379360705589, 5.959615943427338896373329929579, 7.29465271575136374093094976226, 7.99619161923663497977846385810, 8.69150929160286385526632835733, 9.14471164170978611632251099819, 9.897236380402951067965657842774, 11.20178726474909838377658406268, 11.92183889424265653797402007626, 12.66835741914378903815551944147, 13.12006204913940532121756262030, 13.955159473822753712923225365063, 14.93038342899733417620247801075, 15.21662987002910587323628248693, 16.117154334650957724760458262891, 17.16079726144547134745271122556, 17.6528072422109298007228584710, 18.54456233103623774316212407527, 19.1423965630987601753598055530, 19.95050354756562899553535627489