L(s) = 1 | + (0.997 + 0.0747i)3-s + (0.974 + 0.222i)5-s + (0.733 + 0.680i)7-s + (0.988 + 0.149i)9-s + (−0.930 − 0.365i)11-s + (0.680 − 0.733i)13-s + (0.955 + 0.294i)15-s + (0.955 − 0.294i)17-s + i·19-s + (0.680 + 0.733i)21-s + (−0.365 − 0.930i)23-s + (0.900 + 0.433i)25-s + (0.974 + 0.222i)27-s + (−0.563 + 0.826i)29-s + (0.955 + 0.294i)31-s + ⋯ |
L(s) = 1 | + (0.997 + 0.0747i)3-s + (0.974 + 0.222i)5-s + (0.733 + 0.680i)7-s + (0.988 + 0.149i)9-s + (−0.930 − 0.365i)11-s + (0.680 − 0.733i)13-s + (0.955 + 0.294i)15-s + (0.955 − 0.294i)17-s + i·19-s + (0.680 + 0.733i)21-s + (−0.365 − 0.930i)23-s + (0.900 + 0.433i)25-s + (0.974 + 0.222i)27-s + (−0.563 + 0.826i)29-s + (0.955 + 0.294i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2032 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.918 + 0.394i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2032 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.918 + 0.394i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.304399773 + 0.6791610118i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.304399773 + 0.6791610118i\) |
\(L(1)\) |
\(\approx\) |
\(1.935744144 + 0.2177689851i\) |
\(L(1)\) |
\(\approx\) |
\(1.935744144 + 0.2177689851i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 127 | \( 1 \) |
good | 3 | \( 1 + (0.997 + 0.0747i)T \) |
| 5 | \( 1 + (0.974 + 0.222i)T \) |
| 7 | \( 1 + (0.733 + 0.680i)T \) |
| 11 | \( 1 + (-0.930 - 0.365i)T \) |
| 13 | \( 1 + (0.680 - 0.733i)T \) |
| 17 | \( 1 + (0.955 - 0.294i)T \) |
| 19 | \( 1 + iT \) |
| 23 | \( 1 + (-0.365 - 0.930i)T \) |
| 29 | \( 1 + (-0.563 + 0.826i)T \) |
| 31 | \( 1 + (0.955 + 0.294i)T \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + (-0.955 + 0.294i)T \) |
| 43 | \( 1 + (0.563 - 0.826i)T \) |
| 47 | \( 1 + (-0.222 - 0.974i)T \) |
| 53 | \( 1 + (-0.149 + 0.988i)T \) |
| 59 | \( 1 + (-0.866 + 0.5i)T \) |
| 61 | \( 1 + (-0.433 - 0.900i)T \) |
| 67 | \( 1 + (0.997 + 0.0747i)T \) |
| 71 | \( 1 + (-0.365 - 0.930i)T \) |
| 73 | \( 1 + (-0.623 - 0.781i)T \) |
| 79 | \( 1 + (0.365 + 0.930i)T \) |
| 83 | \( 1 + (0.149 - 0.988i)T \) |
| 89 | \( 1 + (-0.623 + 0.781i)T \) |
| 97 | \( 1 + (0.826 - 0.563i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.006282547883683245491809769462, −19.11906461157385983921237674665, −18.4696741331539004257060723639, −17.65072908830699884241128498272, −17.189992605632675634908760926368, −16.10603553399069823538590749027, −15.46624136707348836936698565137, −14.53677499869391886856314461550, −13.95691613265665408343487496158, −13.40831581461293200231918675542, −12.89283862871485275525473318954, −11.76517275670981768684279916583, −10.81059519446490073633742383259, −10.03704065078972971508791367275, −9.50221432077119860362049883170, −8.61499192506174593522168527372, −7.89840437094874330756519247964, −7.24741836218912569675555250929, −6.29958356034460160029793193112, −5.27089389960340125123533046237, −4.51848192368847639108496712460, −3.651840169388185081401853068248, −2.61326261607429779147391896462, −1.820371898088425178893353771231, −1.15342059269444177161986906795,
1.28502214359080303053832761054, 2.00497718337317434964952378012, 2.89642642256345799528927777517, 3.43928623694088019772135754409, 4.81554183365066732869588255924, 5.46878726079228988362482474528, 6.20961373570693754713960382754, 7.35817878151633966044770966962, 8.23162174165622957018334950182, 8.54511628922507368892737112644, 9.52169858083593216929619098894, 10.4173213782681099740299832451, 10.643334129618819153200824704589, 12.09070145065442245312007723168, 12.68732423766149425195637786549, 13.6526110958587792365285894727, 14.01711444756874974630637844561, 14.80527701178853753155138230008, 15.41416793764548813663136196293, 16.21641125809244259719139606943, 17.08183007591109674037835769695, 18.20880347192089431571433934265, 18.45269281264878459496770647606, 18.93161752735886565810239475270, 20.34046434223843793760187501757