L(s) = 1 | + (−0.928 − 0.371i)2-s + (0.723 + 0.690i)4-s + (−0.841 + 0.540i)5-s + (−0.786 + 0.618i)7-s + (−0.415 − 0.909i)8-s + (0.981 − 0.189i)10-s + (0.888 + 0.458i)11-s + (0.580 + 0.814i)13-s + (0.959 − 0.281i)14-s + (0.0475 + 0.998i)16-s + (−0.723 + 0.690i)17-s + (−0.786 − 0.618i)19-s + (−0.981 − 0.189i)20-s + (−0.654 − 0.755i)22-s + (0.327 + 0.945i)23-s + ⋯ |
L(s) = 1 | + (−0.928 − 0.371i)2-s + (0.723 + 0.690i)4-s + (−0.841 + 0.540i)5-s + (−0.786 + 0.618i)7-s + (−0.415 − 0.909i)8-s + (0.981 − 0.189i)10-s + (0.888 + 0.458i)11-s + (0.580 + 0.814i)13-s + (0.959 − 0.281i)14-s + (0.0475 + 0.998i)16-s + (−0.723 + 0.690i)17-s + (−0.786 − 0.618i)19-s + (−0.981 − 0.189i)20-s + (−0.654 − 0.755i)22-s + (0.327 + 0.945i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.946 - 0.323i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.946 - 0.323i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.02630552516 + 0.1584097440i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.02630552516 + 0.1584097440i\) |
\(L(1)\) |
\(\approx\) |
\(0.4956221785 + 0.09007305281i\) |
\(L(1)\) |
\(\approx\) |
\(0.4956221785 + 0.09007305281i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 67 | \( 1 \) |
good | 2 | \( 1 + (-0.928 - 0.371i)T \) |
| 5 | \( 1 + (-0.841 + 0.540i)T \) |
| 7 | \( 1 + (-0.786 + 0.618i)T \) |
| 11 | \( 1 + (0.888 + 0.458i)T \) |
| 13 | \( 1 + (0.580 + 0.814i)T \) |
| 17 | \( 1 + (-0.723 + 0.690i)T \) |
| 19 | \( 1 + (-0.786 - 0.618i)T \) |
| 23 | \( 1 + (0.327 + 0.945i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + (0.580 - 0.814i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.235 - 0.971i)T \) |
| 43 | \( 1 + (-0.959 - 0.281i)T \) |
| 47 | \( 1 + (-0.981 - 0.189i)T \) |
| 53 | \( 1 + (0.959 - 0.281i)T \) |
| 59 | \( 1 + (-0.415 - 0.909i)T \) |
| 61 | \( 1 + (-0.888 + 0.458i)T \) |
| 71 | \( 1 + (-0.723 - 0.690i)T \) |
| 73 | \( 1 + (-0.888 + 0.458i)T \) |
| 79 | \( 1 + (-0.995 + 0.0950i)T \) |
| 83 | \( 1 + (-0.0475 - 0.998i)T \) |
| 89 | \( 1 + (0.654 + 0.755i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.38087383294334421650752200787, −25.0331435560989680209174133969, −24.62739058586790812881256693274, −23.24511686140128729196565107943, −22.82747393980313837198576183753, −21.01836096555292217489375031761, −19.97967212544689739890281353031, −19.55398307298962889994911545903, −18.53777014457236054269399367578, −17.2956634574251045748252541165, −16.45637450195769771198736931468, −15.84338970348024804635535860772, −14.77482909154927068229624696430, −13.43995743871763464324028243950, −12.193862897170261499353902967843, −11.117899302485954404998984978258, −10.158374663816554785333497097701, −8.914935639786574442129638160316, −8.21803644919903158052881273717, −6.98201053028174363140702273703, −6.11648655867113304250615461970, −4.46363481724744115981009774044, −3.11129233492517185953338282880, −1.10498629206690388027807005937, −0.08694340300027052964922790492,
1.78073820662699329407809026240, 3.14733374348197828155754409800, 4.149619089344989944611327673471, 6.45719909327656056639605067371, 6.93813018140917602107138145424, 8.4563481538327768872281251377, 9.15099254458407182001124393454, 10.35490496549881057917716829882, 11.44298587022936649113150746592, 12.07709847622979867545253925349, 13.26778168021617519563631414190, 15.01222798718036998348641082021, 15.62700693786858525300910371452, 16.6800653525324078691173328655, 17.70659024253944923013201041660, 18.86068837517068493612294540753, 19.35092680988988803652595169052, 20.11654063601359937126188849296, 21.541894212534579084649686410322, 22.208398061237784429038295045574, 23.38166452333500859590363150795, 24.52356329603196603252297913777, 25.81736409546557038610548615680, 26.04158906155596609545357020698, 27.35843900572235302983090416475