| L(s) = 1 | + (−0.684 − 0.728i)3-s + (−0.809 + 0.587i)7-s + (−0.0627 + 0.998i)9-s + (0.844 + 0.535i)11-s + (0.998 + 0.0627i)13-s + (−0.425 + 0.904i)17-s + (0.684 − 0.728i)19-s + (0.982 + 0.187i)21-s + (0.968 + 0.248i)23-s + (0.770 − 0.637i)27-s + (−0.481 + 0.876i)29-s + (0.425 − 0.904i)31-s + (−0.187 − 0.982i)33-s + (0.770 + 0.637i)37-s + (−0.637 − 0.770i)39-s + ⋯ |
| L(s) = 1 | + (−0.684 − 0.728i)3-s + (−0.809 + 0.587i)7-s + (−0.0627 + 0.998i)9-s + (0.844 + 0.535i)11-s + (0.998 + 0.0627i)13-s + (−0.425 + 0.904i)17-s + (0.684 − 0.728i)19-s + (0.982 + 0.187i)21-s + (0.968 + 0.248i)23-s + (0.770 − 0.637i)27-s + (−0.481 + 0.876i)29-s + (0.425 − 0.904i)31-s + (−0.187 − 0.982i)33-s + (0.770 + 0.637i)37-s + (−0.637 − 0.770i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.880 + 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.880 + 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.763877088 + 0.4440372642i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.763877088 + 0.4440372642i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9404630200 + 0.01616325697i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9404630200 + 0.01616325697i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| good | 3 | \( 1 + (-0.684 - 0.728i)T \) |
| 7 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (0.844 + 0.535i)T \) |
| 13 | \( 1 + (0.998 + 0.0627i)T \) |
| 17 | \( 1 + (-0.425 + 0.904i)T \) |
| 19 | \( 1 + (0.684 - 0.728i)T \) |
| 23 | \( 1 + (0.968 + 0.248i)T \) |
| 29 | \( 1 + (-0.481 + 0.876i)T \) |
| 31 | \( 1 + (0.425 - 0.904i)T \) |
| 37 | \( 1 + (0.770 + 0.637i)T \) |
| 41 | \( 1 + (-0.968 + 0.248i)T \) |
| 43 | \( 1 + (0.951 + 0.309i)T \) |
| 47 | \( 1 + (0.992 - 0.125i)T \) |
| 53 | \( 1 + (0.982 + 0.187i)T \) |
| 59 | \( 1 + (0.368 - 0.929i)T \) |
| 61 | \( 1 + (-0.248 + 0.968i)T \) |
| 67 | \( 1 + (-0.481 - 0.876i)T \) |
| 71 | \( 1 + (-0.992 + 0.125i)T \) |
| 73 | \( 1 + (0.929 - 0.368i)T \) |
| 79 | \( 1 + (-0.728 + 0.684i)T \) |
| 83 | \( 1 + (0.684 - 0.728i)T \) |
| 89 | \( 1 + (0.929 - 0.368i)T \) |
| 97 | \( 1 + (0.876 + 0.481i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.82704564764504359446253295176, −18.918009514283131589809650915542, −18.24623234313336579451568506046, −17.31250273346475388660668773089, −16.742112767362800794079635190985, −16.080265501485021086699501931226, −15.66116562264718282847594899499, −14.61348599286026425051709331549, −13.81594641018641182688350785719, −13.17294239395371650721585629458, −12.13096400736097941444269409857, −11.519487356099055890620757325890, −10.77158248675077174385204482335, −10.14514296892438544041810755607, −9.22644390184283034724701805964, −8.84191335914479462838206225441, −7.47364754843922204567704307181, −6.648280028250580662964609550907, −6.04407683143396835642650346248, −5.25830208123429638574124438890, −4.14062485239768846744114808863, −3.6815673959987162376764307380, −2.8218868554256015458783821438, −1.12502015852479618094115423966, −0.55565964410120708838994879622,
0.75685727073263368351231426400, 1.55998484657780839770401828698, 2.55316970986076722010741264299, 3.554445008586017595840990369890, 4.5587889358493291648405915237, 5.55645941287644199801302987976, 6.25423415707480848045662091602, 6.78763325871581140575462747698, 7.5901794777622847319812650953, 8.71011667367946580633105309319, 9.230998679777309525333708449598, 10.25583031721301588348869654095, 11.14268478145942853545676587021, 11.71097054556809237157546224463, 12.47984639508351838542597955084, 13.18757418905612012962992154052, 13.60785174558542094135174553723, 14.849447998442788896097025682724, 15.47016094602156189352467326577, 16.32828048627802983055239846124, 16.98383724777298619027724489127, 17.65883362833332356464731701723, 18.43696075015635234096028248217, 18.97500308336619469539367080878, 19.70714412767712249132713821966