L(s) = 1 | + (0.333 − 0.942i)3-s + (−0.608 − 0.793i)5-s + (0.777 − 0.629i)7-s + (−0.777 − 0.629i)9-s + (−0.999 + 0.0261i)11-s + (−0.182 − 0.983i)13-s + (−0.951 + 0.309i)15-s + (−0.406 + 0.913i)17-s + (0.566 + 0.824i)19-s + (−0.333 − 0.942i)21-s + (0.156 − 0.987i)23-s + (−0.258 + 0.965i)25-s + (−0.852 + 0.522i)27-s + (−0.0784 − 0.996i)29-s + (−0.309 + 0.951i)33-s + ⋯ |
L(s) = 1 | + (0.333 − 0.942i)3-s + (−0.608 − 0.793i)5-s + (0.777 − 0.629i)7-s + (−0.777 − 0.629i)9-s + (−0.999 + 0.0261i)11-s + (−0.182 − 0.983i)13-s + (−0.951 + 0.309i)15-s + (−0.406 + 0.913i)17-s + (0.566 + 0.824i)19-s + (−0.333 − 0.942i)21-s + (0.156 − 0.987i)23-s + (−0.258 + 0.965i)25-s + (−0.852 + 0.522i)27-s + (−0.0784 − 0.996i)29-s + (−0.309 + 0.951i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.3079018421 - 0.5497004149i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.3079018421 - 0.5497004149i\) |
\(L(1)\) |
\(\approx\) |
\(0.6969432250 - 0.5405007053i\) |
\(L(1)\) |
\(\approx\) |
\(0.6969432250 - 0.5405007053i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 31 | \( 1 \) |
good | 3 | \( 1 + (0.333 - 0.942i)T \) |
| 5 | \( 1 + (-0.608 - 0.793i)T \) |
| 7 | \( 1 + (0.777 - 0.629i)T \) |
| 11 | \( 1 + (-0.999 + 0.0261i)T \) |
| 13 | \( 1 + (-0.182 - 0.983i)T \) |
| 17 | \( 1 + (-0.406 + 0.913i)T \) |
| 19 | \( 1 + (0.566 + 0.824i)T \) |
| 23 | \( 1 + (0.156 - 0.987i)T \) |
| 29 | \( 1 + (-0.0784 - 0.996i)T \) |
| 37 | \( 1 + (0.991 - 0.130i)T \) |
| 41 | \( 1 + (-0.998 - 0.0523i)T \) |
| 43 | \( 1 + (-0.983 - 0.182i)T \) |
| 47 | \( 1 + (-0.951 + 0.309i)T \) |
| 53 | \( 1 + (0.284 - 0.958i)T \) |
| 59 | \( 1 + (-0.430 - 0.902i)T \) |
| 61 | \( 1 + (-0.923 + 0.382i)T \) |
| 67 | \( 1 + (0.130 - 0.991i)T \) |
| 71 | \( 1 + (-0.629 + 0.777i)T \) |
| 73 | \( 1 + (-0.358 + 0.933i)T \) |
| 79 | \( 1 + (-0.406 + 0.913i)T \) |
| 83 | \( 1 + (-0.430 + 0.902i)T \) |
| 89 | \( 1 + (-0.156 - 0.987i)T \) |
| 97 | \( 1 + (0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.376307407688898314834835612425, −19.89540274071177337411404796996, −18.953326282699177256080580619574, −18.29382710194591820649664414025, −17.731984569526914853541128507436, −16.520233016650890179778569687510, −15.96559950454696093371935164875, −15.192933322742580965027105386532, −14.90796821768423871766653708752, −13.943435777483045314919285963754, −13.42394373870257139534841389034, −11.95623606167281063308006140733, −11.43409898396719365007022925912, −10.954758214670644504723386102671, −10.040834533934707358189641600834, −9.2267757090378985359086926246, −8.56850397269639675612009474866, −7.66091112039098501325937879247, −7.08517969821221747405773791543, −5.841326393951449854801103592667, −4.87479687852560458430095055629, −4.55029207986706344431271392274, −3.22967250548669749277791239526, −2.81003829163327451691970332692, −1.821132128279093542241440407691,
0.2074050119538606513174283781, 1.181294474659645025347031239698, 2.038204745719348510148065555019, 3.10842850066952503654137626254, 4.02210390830070247847993330324, 4.95815763113878589821627129747, 5.68922959706364597061155526918, 6.7428552033481303508086543782, 7.79708339428355134983740083342, 8.02198027317017943013540215887, 8.537099972601988465207682188096, 9.80654553721519960348432317740, 10.64361281712796884075462665632, 11.490844782770683405244682714264, 12.20478245233291997422220200323, 13.07971680711191339713468627467, 13.233910235873211180017557219763, 14.38776982692731514696085276756, 15.00647551883775222642927559276, 15.75759006867384540882774981682, 16.822150366244055227333715294941, 17.268974172376541673796228146292, 18.178253636882868372849295048436, 18.643341135475259596560932626770, 19.68686535430551095036439153354