L(s) = 1 | + (−0.760 − 0.649i)3-s + (0.923 − 0.382i)5-s + (0.156 − 0.987i)7-s + (0.156 + 0.987i)9-s + (0.852 + 0.522i)11-s + (0.649 − 0.760i)13-s + (−0.951 − 0.309i)15-s + (0.587 − 0.809i)17-s + (0.0784 − 0.996i)19-s + (−0.760 + 0.649i)21-s + (−0.156 − 0.987i)23-s + (0.707 − 0.707i)25-s + (0.522 − 0.852i)27-s + (−0.996 − 0.0784i)29-s + (−0.309 − 0.951i)33-s + ⋯ |
L(s) = 1 | + (−0.760 − 0.649i)3-s + (0.923 − 0.382i)5-s + (0.156 − 0.987i)7-s + (0.156 + 0.987i)9-s + (0.852 + 0.522i)11-s + (0.649 − 0.760i)13-s + (−0.951 − 0.309i)15-s + (0.587 − 0.809i)17-s + (0.0784 − 0.996i)19-s + (−0.760 + 0.649i)21-s + (−0.156 − 0.987i)23-s + (0.707 − 0.707i)25-s + (0.522 − 0.852i)27-s + (−0.996 − 0.0784i)29-s + (−0.309 − 0.951i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.551 - 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.551 - 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7705506386 - 1.433286204i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7705506386 - 1.433286204i\) |
\(L(1)\) |
\(\approx\) |
\(0.9647656901 - 0.5340539361i\) |
\(L(1)\) |
\(\approx\) |
\(0.9647656901 - 0.5340539361i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 31 | \( 1 \) |
good | 3 | \( 1 + (-0.760 - 0.649i)T \) |
| 5 | \( 1 + (0.923 - 0.382i)T \) |
| 7 | \( 1 + (0.156 - 0.987i)T \) |
| 11 | \( 1 + (0.852 + 0.522i)T \) |
| 13 | \( 1 + (0.649 - 0.760i)T \) |
| 17 | \( 1 + (0.587 - 0.809i)T \) |
| 19 | \( 1 + (0.0784 - 0.996i)T \) |
| 23 | \( 1 + (-0.156 - 0.987i)T \) |
| 29 | \( 1 + (-0.996 - 0.0784i)T \) |
| 37 | \( 1 + (-0.923 + 0.382i)T \) |
| 41 | \( 1 + (-0.453 + 0.891i)T \) |
| 43 | \( 1 + (-0.760 + 0.649i)T \) |
| 47 | \( 1 + (0.951 + 0.309i)T \) |
| 53 | \( 1 + (-0.233 + 0.972i)T \) |
| 59 | \( 1 + (-0.0784 - 0.996i)T \) |
| 61 | \( 1 + (0.382 - 0.923i)T \) |
| 67 | \( 1 + (0.382 - 0.923i)T \) |
| 71 | \( 1 + (0.987 - 0.156i)T \) |
| 73 | \( 1 + (0.987 + 0.156i)T \) |
| 79 | \( 1 + (-0.587 + 0.809i)T \) |
| 83 | \( 1 + (0.0784 - 0.996i)T \) |
| 89 | \( 1 + (-0.156 + 0.987i)T \) |
| 97 | \( 1 + (0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.55701014795247278640061878716, −19.20382526884271525842059760103, −18.678458585175849413434511896894, −18.02663276224515607667366290001, −17.14175855898657244856303237186, −16.764348889025933479673158250198, −15.90211805100504903386016412930, −15.09356034623016222248207362084, −14.446983219160798009752233944993, −13.77531346557230972504105530489, −12.71015698497058003460550063919, −11.892978924273839010475903409443, −11.403484521411674575555143247335, −10.52540740186786176953556131300, −9.849746066500933433392404933096, −9.07056615212990874190823937902, −8.57387429005298032739004250853, −7.12940232514575516326841335145, −6.260390441185973470811911778439, −5.72125646563867826340824889280, −5.2927386507351128313386673658, −3.836995610578247835288529460788, −3.48592901210611212471392929571, −1.98317106400256711515858099636, −1.373305156154301875970115448941,
0.679431322765313613105024263465, 1.31385022920770509767125219462, 2.230184520516688319710117855167, 3.43973576860312934923273478217, 4.68037885449869454337313488322, 5.10865550860017547634052223087, 6.18826506996404401616838798215, 6.70095912825053855867566977637, 7.4941816156221567250624803072, 8.35086407275717771330059322597, 9.39902278487055455383715733388, 10.10121975930020839803895057956, 10.86550341383316886193659380028, 11.53121250643547525764278758484, 12.52441948181552376198258623744, 13.01502342565152197485503268817, 13.82378260901930012177999873593, 14.22588393831990763057996217943, 15.43719776417153992582605792040, 16.4222827240875741215596839665, 17.01746021947179242533001381044, 17.39579227984496891487351255751, 18.19417897052958710038757947525, 18.70596910615289926977756093034, 20.0146856749197179469800718274