L(s) = 1 | + (0.972 − 0.233i)3-s + (0.382 + 0.923i)5-s + (−0.891 − 0.453i)7-s + (0.891 − 0.453i)9-s + (0.649 + 0.760i)11-s + (−0.233 − 0.972i)13-s + (0.587 + 0.809i)15-s + (−0.951 − 0.309i)17-s + (−0.852 + 0.522i)19-s + (−0.972 − 0.233i)21-s + (−0.891 + 0.453i)23-s + (−0.707 + 0.707i)25-s + (0.760 − 0.649i)27-s + (0.522 + 0.852i)29-s + (0.809 + 0.587i)33-s + ⋯ |
L(s) = 1 | + (0.972 − 0.233i)3-s + (0.382 + 0.923i)5-s + (−0.891 − 0.453i)7-s + (0.891 − 0.453i)9-s + (0.649 + 0.760i)11-s + (−0.233 − 0.972i)13-s + (0.587 + 0.809i)15-s + (−0.951 − 0.309i)17-s + (−0.852 + 0.522i)19-s + (−0.972 − 0.233i)21-s + (−0.891 + 0.453i)23-s + (−0.707 + 0.707i)25-s + (0.760 − 0.649i)27-s + (0.522 + 0.852i)29-s + (0.809 + 0.587i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.448 + 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.448 + 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.728665850 + 1.066892855i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.728665850 + 1.066892855i\) |
\(L(1)\) |
\(\approx\) |
\(1.374779472 + 0.2172924358i\) |
\(L(1)\) |
\(\approx\) |
\(1.374779472 + 0.2172924358i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 31 | \( 1 \) |
good | 3 | \( 1 + (0.972 - 0.233i)T \) |
| 5 | \( 1 + (0.382 + 0.923i)T \) |
| 7 | \( 1 + (-0.891 - 0.453i)T \) |
| 11 | \( 1 + (0.649 + 0.760i)T \) |
| 13 | \( 1 + (-0.233 - 0.972i)T \) |
| 17 | \( 1 + (-0.951 - 0.309i)T \) |
| 19 | \( 1 + (-0.852 + 0.522i)T \) |
| 23 | \( 1 + (-0.891 + 0.453i)T \) |
| 29 | \( 1 + (0.522 + 0.852i)T \) |
| 37 | \( 1 + (0.382 + 0.923i)T \) |
| 41 | \( 1 + (0.156 + 0.987i)T \) |
| 43 | \( 1 + (0.972 + 0.233i)T \) |
| 47 | \( 1 + (0.587 + 0.809i)T \) |
| 53 | \( 1 + (0.0784 + 0.996i)T \) |
| 59 | \( 1 + (0.852 + 0.522i)T \) |
| 61 | \( 1 + (0.923 + 0.382i)T \) |
| 67 | \( 1 + (0.923 + 0.382i)T \) |
| 71 | \( 1 + (0.453 + 0.891i)T \) |
| 73 | \( 1 + (0.453 - 0.891i)T \) |
| 79 | \( 1 + (-0.951 - 0.309i)T \) |
| 83 | \( 1 + (0.852 - 0.522i)T \) |
| 89 | \( 1 + (0.891 + 0.453i)T \) |
| 97 | \( 1 + (-0.309 - 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.651351182657676700035050374594, −19.4052323964128952807647070750, −18.66638395731504633093171195311, −17.540937775121635717577716149368, −16.81468059823002562755483509647, −16.01756062768220411655799281319, −15.690947256354751805405966234687, −14.59909329192268733455390190982, −13.91972170046236108979949826087, −13.29800304468654181304577620093, −12.63772287982457586175310406790, −11.895737142024914969626525914758, −10.81734485009752585848681293712, −9.838444863186335633326881075766, −9.21932582189193354377570533041, −8.76046954419865688730996679609, −8.16297457567819402231464838744, −6.8135881955167301959637182068, −6.30277381852917596799651365524, −5.25877631255794321631597352032, −4.08393663776881107369797524183, −3.905976936633421736013295993910, −2.28181874158743290459116030865, −2.191470713333017514070970912239, −0.60900100348354791622102751626,
1.215548638010055944621166237520, 2.31187217794758704164242785913, 2.873202271596064499044612178044, 3.76272179537772201911969025392, 4.441891645473374358601057913043, 5.93988764618207133649507175059, 6.62874217660533161300177999018, 7.20072701710476175800174574428, 7.96077270313575881315833705666, 8.966364623135513447512855576745, 9.80173236923801397030023987002, 10.13607276151518253807872060891, 11.02751531815089877386732283833, 12.24142329520019715267047549070, 12.86565689414306898950120248764, 13.56155905489375716060579962594, 14.24348268581107841268244471244, 14.91669864692608698731690963491, 15.48659609711687559526687925324, 16.33154632709702587596930959419, 17.54320555552638283529133309759, 17.8265345219280199493526470219, 18.81868140301436672678409538122, 19.406767872795659553126413687607, 20.10158673505286381918861058887