L(s) = 1 | + (−0.760 + 0.649i)3-s + (0.923 + 0.382i)5-s + (−0.156 − 0.987i)7-s + (0.156 − 0.987i)9-s + (0.852 − 0.522i)11-s + (−0.649 − 0.760i)13-s + (−0.951 + 0.309i)15-s + (−0.587 − 0.809i)17-s + (−0.0784 − 0.996i)19-s + (0.760 + 0.649i)21-s + (−0.156 + 0.987i)23-s + (0.707 + 0.707i)25-s + (0.522 + 0.852i)27-s + (0.996 − 0.0784i)29-s + (−0.309 + 0.951i)33-s + ⋯ |
L(s) = 1 | + (−0.760 + 0.649i)3-s + (0.923 + 0.382i)5-s + (−0.156 − 0.987i)7-s + (0.156 − 0.987i)9-s + (0.852 − 0.522i)11-s + (−0.649 − 0.760i)13-s + (−0.951 + 0.309i)15-s + (−0.587 − 0.809i)17-s + (−0.0784 − 0.996i)19-s + (0.760 + 0.649i)21-s + (−0.156 + 0.987i)23-s + (0.707 + 0.707i)25-s + (0.522 + 0.852i)27-s + (0.996 − 0.0784i)29-s + (−0.309 + 0.951i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0359 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0359 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7338783823 - 0.7607763922i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7338783823 - 0.7607763922i\) |
\(L(1)\) |
\(\approx\) |
\(0.9027966028 - 0.09206957767i\) |
\(L(1)\) |
\(\approx\) |
\(0.9027966028 - 0.09206957767i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 31 | \( 1 \) |
good | 3 | \( 1 + (-0.760 + 0.649i)T \) |
| 5 | \( 1 + (0.923 + 0.382i)T \) |
| 7 | \( 1 + (-0.156 - 0.987i)T \) |
| 11 | \( 1 + (0.852 - 0.522i)T \) |
| 13 | \( 1 + (-0.649 - 0.760i)T \) |
| 17 | \( 1 + (-0.587 - 0.809i)T \) |
| 19 | \( 1 + (-0.0784 - 0.996i)T \) |
| 23 | \( 1 + (-0.156 + 0.987i)T \) |
| 29 | \( 1 + (0.996 - 0.0784i)T \) |
| 37 | \( 1 + (0.923 + 0.382i)T \) |
| 41 | \( 1 + (-0.453 - 0.891i)T \) |
| 43 | \( 1 + (-0.760 - 0.649i)T \) |
| 47 | \( 1 + (-0.951 + 0.309i)T \) |
| 53 | \( 1 + (0.233 + 0.972i)T \) |
| 59 | \( 1 + (0.0784 - 0.996i)T \) |
| 61 | \( 1 + (-0.382 - 0.923i)T \) |
| 67 | \( 1 + (-0.382 - 0.923i)T \) |
| 71 | \( 1 + (-0.987 - 0.156i)T \) |
| 73 | \( 1 + (-0.987 + 0.156i)T \) |
| 79 | \( 1 + (-0.587 - 0.809i)T \) |
| 83 | \( 1 + (0.0784 + 0.996i)T \) |
| 89 | \( 1 + (0.156 + 0.987i)T \) |
| 97 | \( 1 + (0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.921220786975409100936300443324, −19.41611963633582439399707212657, −18.47701819554862430116361026540, −18.00312023104605834063290414483, −17.28597739154849685137154473546, −16.61700838867906656607364733447, −16.1377524347776239624591735036, −14.69106311312855822142087182070, −14.50026276737191301934831525416, −13.22802565999115913866061676005, −12.81017435352003391542106651046, −11.96626749357577953162269501529, −11.66471165841323489126375880976, −10.33672945963197828222002291489, −9.854487827521025371713969513505, −8.85922085708270500761584436645, −8.28606686947314494936722222294, −7.03808467576796215162107022088, −6.2748174017363211110845276, −6.00032627232294324908249731737, −4.88640042466013207311202826481, −4.33756204647241828582671069241, −2.69147026938838487496333585286, −1.91743542796561861172517139220, −1.35844361345988049858756635559,
0.40601913433811974182432878684, 1.40675565199103862505663553968, 2.80246076648741520501789348229, 3.51106423402734384970562645686, 4.585478834228737557126417388508, 5.16789717296697429171753770576, 6.17122913833850638532659470181, 6.71444544516980992557722013693, 7.450745182581566625434885404244, 8.82221472366934782956340673096, 9.59581683820179307064900638334, 10.05793412399662435446679263790, 10.88322003976604985442494120318, 11.39186032523472146397430034912, 12.309471326813519124531413724854, 13.39239456738851327437973091575, 13.78945674166798218204354376661, 14.70511025171141972398173998119, 15.4497399683244896957249204525, 16.27170730239195471629803837911, 17.04190432987081061161658652589, 17.512530075081430166417674016215, 17.93355667270740793280944239447, 19.06253077592711134294942598202, 20.012264998999147738905103930319