L(s) = 1 | + (−0.972 − 0.233i)3-s + (−0.382 + 0.923i)5-s + (−0.891 + 0.453i)7-s + (0.891 + 0.453i)9-s + (−0.649 + 0.760i)11-s + (0.233 − 0.972i)13-s + (0.587 − 0.809i)15-s + (−0.951 + 0.309i)17-s + (0.852 + 0.522i)19-s + (0.972 − 0.233i)21-s + (−0.891 − 0.453i)23-s + (−0.707 − 0.707i)25-s + (−0.760 − 0.649i)27-s + (−0.522 + 0.852i)29-s + (0.809 − 0.587i)33-s + ⋯ |
L(s) = 1 | + (−0.972 − 0.233i)3-s + (−0.382 + 0.923i)5-s + (−0.891 + 0.453i)7-s + (0.891 + 0.453i)9-s + (−0.649 + 0.760i)11-s + (0.233 − 0.972i)13-s + (0.587 − 0.809i)15-s + (−0.951 + 0.309i)17-s + (0.852 + 0.522i)19-s + (0.972 − 0.233i)21-s + (−0.891 − 0.453i)23-s + (−0.707 − 0.707i)25-s + (−0.760 − 0.649i)27-s + (−0.522 + 0.852i)29-s + (0.809 − 0.587i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.448 - 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.448 - 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1970054312 - 0.1215872269i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1970054312 - 0.1215872269i\) |
\(L(1)\) |
\(\approx\) |
\(0.5171868337 + 0.1015140346i\) |
\(L(1)\) |
\(\approx\) |
\(0.5171868337 + 0.1015140346i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 31 | \( 1 \) |
good | 3 | \( 1 + (-0.972 - 0.233i)T \) |
| 5 | \( 1 + (-0.382 + 0.923i)T \) |
| 7 | \( 1 + (-0.891 + 0.453i)T \) |
| 11 | \( 1 + (-0.649 + 0.760i)T \) |
| 13 | \( 1 + (0.233 - 0.972i)T \) |
| 17 | \( 1 + (-0.951 + 0.309i)T \) |
| 19 | \( 1 + (0.852 + 0.522i)T \) |
| 23 | \( 1 + (-0.891 - 0.453i)T \) |
| 29 | \( 1 + (-0.522 + 0.852i)T \) |
| 37 | \( 1 + (-0.382 + 0.923i)T \) |
| 41 | \( 1 + (0.156 - 0.987i)T \) |
| 43 | \( 1 + (-0.972 + 0.233i)T \) |
| 47 | \( 1 + (0.587 - 0.809i)T \) |
| 53 | \( 1 + (-0.0784 + 0.996i)T \) |
| 59 | \( 1 + (-0.852 + 0.522i)T \) |
| 61 | \( 1 + (-0.923 + 0.382i)T \) |
| 67 | \( 1 + (-0.923 + 0.382i)T \) |
| 71 | \( 1 + (0.453 - 0.891i)T \) |
| 73 | \( 1 + (0.453 + 0.891i)T \) |
| 79 | \( 1 + (-0.951 + 0.309i)T \) |
| 83 | \( 1 + (-0.852 - 0.522i)T \) |
| 89 | \( 1 + (0.891 - 0.453i)T \) |
| 97 | \( 1 + (-0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.07529754673910118720841222481, −19.41955878663240069042284672628, −18.58999455164881178641531924511, −17.85024962910237396889325600045, −16.95317313535532776215200554959, −16.45630597474572786304523242074, −15.77255899383961610484878739074, −15.59019315709730809744597833167, −13.94942156260535559158031504475, −13.34060084135709559142960903767, −12.77607266870062444058246413499, −11.78128740849245268152534339077, −11.38179278127910434426726173175, −10.53832491678521530961640194678, −9.51052982121709946927115054710, −9.18786181305175537742113677255, −7.99094544616745764240361310291, −7.174459679688027420104405131998, −6.31770866106823241124197323517, −5.63638845728903833698307269386, −4.73222814208246172386022901778, −4.087837085693000213045092267935, −3.26216475427727864627947103735, −1.81787185231484020668282450856, −0.66312934430166547831301372308,
0.14254539806662162050308997113, 1.7246929647277134632607248074, 2.69636819159406722658022085339, 3.53571261096335232274129252219, 4.53071579623814715654065224309, 5.57547359731265618584882306893, 6.10547867772872224021236206277, 6.978394157814715116765391112499, 7.495142137247291040918282733237, 8.45735472758084466220241937057, 9.700170671730645304610922948522, 10.39355348941924495978650323636, 10.75063214787953057076818204550, 11.87152232272536543996943859419, 12.31293025076632156041993794383, 13.083988547668936325155795904169, 13.801448510747600576320975531238, 15.07048487458643622227683832332, 15.51372019140597559370704768093, 16.05796663528620177133080763340, 16.97006858077469174844635541069, 17.94494348608456425525238389205, 18.3094720266523758122877251666, 18.79866116571904169363046283234, 19.87015143902601848315788108638