L(s) = 1 | + (−0.522 + 0.852i)3-s + (−0.382 + 0.923i)5-s + (0.453 − 0.891i)7-s + (−0.453 − 0.891i)9-s + (0.0784 − 0.996i)11-s + (−0.852 − 0.522i)13-s + (−0.587 − 0.809i)15-s + (0.951 + 0.309i)17-s + (−0.233 + 0.972i)19-s + (0.522 + 0.852i)21-s + (0.453 + 0.891i)23-s + (−0.707 − 0.707i)25-s + (0.996 + 0.0784i)27-s + (−0.972 − 0.233i)29-s + (0.809 + 0.587i)33-s + ⋯ |
L(s) = 1 | + (−0.522 + 0.852i)3-s + (−0.382 + 0.923i)5-s + (0.453 − 0.891i)7-s + (−0.453 − 0.891i)9-s + (0.0784 − 0.996i)11-s + (−0.852 − 0.522i)13-s + (−0.587 − 0.809i)15-s + (0.951 + 0.309i)17-s + (−0.233 + 0.972i)19-s + (0.522 + 0.852i)21-s + (0.453 + 0.891i)23-s + (−0.707 − 0.707i)25-s + (0.996 + 0.0784i)27-s + (−0.972 − 0.233i)29-s + (0.809 + 0.587i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.265 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.265 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1964153079 - 0.2577672485i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1964153079 - 0.2577672485i\) |
\(L(1)\) |
\(\approx\) |
\(0.7013907173 + 0.1351979920i\) |
\(L(1)\) |
\(\approx\) |
\(0.7013907173 + 0.1351979920i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 31 | \( 1 \) |
good | 3 | \( 1 + (-0.522 + 0.852i)T \) |
| 5 | \( 1 + (-0.382 + 0.923i)T \) |
| 7 | \( 1 + (0.453 - 0.891i)T \) |
| 11 | \( 1 + (0.0784 - 0.996i)T \) |
| 13 | \( 1 + (-0.852 - 0.522i)T \) |
| 17 | \( 1 + (0.951 + 0.309i)T \) |
| 19 | \( 1 + (-0.233 + 0.972i)T \) |
| 23 | \( 1 + (0.453 + 0.891i)T \) |
| 29 | \( 1 + (-0.972 - 0.233i)T \) |
| 37 | \( 1 + (-0.382 + 0.923i)T \) |
| 41 | \( 1 + (0.987 - 0.156i)T \) |
| 43 | \( 1 + (-0.522 - 0.852i)T \) |
| 47 | \( 1 + (-0.587 - 0.809i)T \) |
| 53 | \( 1 + (0.649 - 0.760i)T \) |
| 59 | \( 1 + (0.233 + 0.972i)T \) |
| 61 | \( 1 + (-0.923 + 0.382i)T \) |
| 67 | \( 1 + (-0.923 + 0.382i)T \) |
| 71 | \( 1 + (-0.891 + 0.453i)T \) |
| 73 | \( 1 + (-0.891 - 0.453i)T \) |
| 79 | \( 1 + (0.951 + 0.309i)T \) |
| 83 | \( 1 + (0.233 - 0.972i)T \) |
| 89 | \( 1 + (-0.453 + 0.891i)T \) |
| 97 | \( 1 + (-0.309 - 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.04809688750906841133924828965, −19.37665781744136541213806877860, −18.75598271518588050453220139393, −17.92460295051460745276648091221, −17.34938950067537820521877772466, −16.642804389148961916644576729663, −15.99377334965295222312248604081, −14.92335764208153244113823320683, −14.46892329245563605854302694739, −13.297073002223494145072027992917, −12.54215375258070647285908779106, −12.23973845996674287006830333502, −11.56659774897044150921098146613, −10.77829058682911266627231713392, −9.45727817146403575149943553714, −9.02804818208417810410077329585, −7.951782771638422094910923160621, −7.474218481162673090139794558622, −6.61067645336978999229713776747, −5.57149509342028179728490686684, −4.93694587491794008282998853180, −4.40407973307722062393716114164, −2.79568297626216620234108657571, −2.005951281152666436650198807885, −1.19597772208854789694539396628,
0.12819923992392595709643810942, 1.41392789567358983221879851251, 2.94799520774509801165032208333, 3.58399899588092721769299788951, 4.17594965248140103184184582285, 5.34263149427745501962043102361, 5.8578880714525583921034704871, 6.92657986741055687684470601208, 7.65714783900502299213531995776, 8.38891689980077135353904536628, 9.5791387686514287801081049329, 10.39508146965384199681025236225, 10.59773366254575259121018009759, 11.599176263454231023051107171442, 11.96324293494266489205802023933, 13.249916611744600502165905505, 14.11190607438543831902439414763, 14.83804570963136754000343008344, 15.13770242277570303729142427502, 16.32029727938580053044729291687, 16.75663537936550580484089826886, 17.437876002625831577815989910058, 18.22194831709866973599788319591, 19.11926884932139123576106146906, 19.67565312352108991198716168006