L(s) = 1 | + (−0.972 + 0.233i)3-s + (−0.382 − 0.923i)5-s + (0.891 + 0.453i)7-s + (0.891 − 0.453i)9-s + (−0.649 − 0.760i)11-s + (−0.233 − 0.972i)13-s + (0.587 + 0.809i)15-s + (0.951 + 0.309i)17-s + (−0.852 + 0.522i)19-s + (−0.972 − 0.233i)21-s + (−0.891 + 0.453i)23-s + (−0.707 + 0.707i)25-s + (−0.760 + 0.649i)27-s + (0.522 + 0.852i)29-s + (0.809 + 0.587i)33-s + ⋯ |
L(s) = 1 | + (−0.972 + 0.233i)3-s + (−0.382 − 0.923i)5-s + (0.891 + 0.453i)7-s + (0.891 − 0.453i)9-s + (−0.649 − 0.760i)11-s + (−0.233 − 0.972i)13-s + (0.587 + 0.809i)15-s + (0.951 + 0.309i)17-s + (−0.852 + 0.522i)19-s + (−0.972 − 0.233i)21-s + (−0.891 + 0.453i)23-s + (−0.707 + 0.707i)25-s + (−0.760 + 0.649i)27-s + (0.522 + 0.852i)29-s + (0.809 + 0.587i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.635 + 0.772i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.635 + 0.772i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7303205192 + 0.3447304256i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7303205192 + 0.3447304256i\) |
\(L(1)\) |
\(\approx\) |
\(0.7391503863 + 0.002160168967i\) |
\(L(1)\) |
\(\approx\) |
\(0.7391503863 + 0.002160168967i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 31 | \( 1 \) |
good | 3 | \( 1 + (-0.972 + 0.233i)T \) |
| 5 | \( 1 + (-0.382 - 0.923i)T \) |
| 7 | \( 1 + (0.891 + 0.453i)T \) |
| 11 | \( 1 + (-0.649 - 0.760i)T \) |
| 13 | \( 1 + (-0.233 - 0.972i)T \) |
| 17 | \( 1 + (0.951 + 0.309i)T \) |
| 19 | \( 1 + (-0.852 + 0.522i)T \) |
| 23 | \( 1 + (-0.891 + 0.453i)T \) |
| 29 | \( 1 + (0.522 + 0.852i)T \) |
| 37 | \( 1 + (0.382 + 0.923i)T \) |
| 41 | \( 1 + (0.156 + 0.987i)T \) |
| 43 | \( 1 + (-0.972 - 0.233i)T \) |
| 47 | \( 1 + (-0.587 - 0.809i)T \) |
| 53 | \( 1 + (0.0784 + 0.996i)T \) |
| 59 | \( 1 + (0.852 + 0.522i)T \) |
| 61 | \( 1 + (0.923 + 0.382i)T \) |
| 67 | \( 1 + (0.923 + 0.382i)T \) |
| 71 | \( 1 + (-0.453 - 0.891i)T \) |
| 73 | \( 1 + (-0.453 + 0.891i)T \) |
| 79 | \( 1 + (-0.951 - 0.309i)T \) |
| 83 | \( 1 + (-0.852 + 0.522i)T \) |
| 89 | \( 1 + (-0.891 - 0.453i)T \) |
| 97 | \( 1 + (-0.309 - 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.673530768490500493602757608655, −18.97263761291291481030710076277, −18.32756911119234454924512397534, −17.7037503635663455363935870167, −17.154985405569993668838774393266, −16.22183969257831461386996396072, −15.60472758317998738352382479328, −14.60298581597971521168270643029, −14.20533104989819043163806356728, −13.16265191805390219797428633642, −12.295834279919656105332929229210, −11.5895026305268053261478331940, −11.12882627136962815735614113427, −10.244415830639351008724396281308, −9.8529028425697432207212275428, −8.31279410157001923853735354262, −7.61058525178349694504632243269, −7.01257692627944112726745960993, −6.34198864262640057484572639616, −5.30197729546859888677831990653, −4.50205459115689442002740617173, −3.92841038755555277693080956487, −2.42504926215155962811606215944, −1.82180550463716382226714519338, −0.402748237447832981148572554571,
0.89224245048106190595438145174, 1.6864038710094804835998307360, 3.10576536471851691855577866927, 4.10261233553305680888037493120, 4.93430562277966269009301968164, 5.52136222405364031051608352737, 6.016425291552409298782822559546, 7.373019138009025709915337488039, 8.24022568609255000265029204789, 8.51607301473383524099575233074, 9.9222547693881736462908358784, 10.364934952941841137120314627211, 11.387690728900935646986796247053, 11.83653777777647715361065605738, 12.64324998818062189926704643054, 13.12331660826728218052697321020, 14.33420630172484620682476224336, 15.19832052469431464764858091398, 15.73332948965552445500044970371, 16.61014272037042343620198709157, 16.95938989076938890465016970243, 17.93625485664599844017370351958, 18.380909609045499073965744663786, 19.28759898129887639893139226792, 20.231400852094710326188826761403