L(s) = 1 | + (0.477 − 0.878i)3-s + (−0.991 − 0.130i)5-s + (0.544 − 0.838i)7-s + (−0.544 − 0.838i)9-s + (0.902 + 0.430i)11-s + (0.0261 + 0.999i)13-s + (−0.587 + 0.809i)15-s + (−0.743 − 0.669i)17-s + (0.725 − 0.688i)19-s + (−0.477 − 0.878i)21-s + (0.453 − 0.891i)23-s + (0.965 + 0.258i)25-s + (−0.996 + 0.0784i)27-s + (0.972 − 0.233i)29-s + (0.809 − 0.587i)33-s + ⋯ |
L(s) = 1 | + (0.477 − 0.878i)3-s + (−0.991 − 0.130i)5-s + (0.544 − 0.838i)7-s + (−0.544 − 0.838i)9-s + (0.902 + 0.430i)11-s + (0.0261 + 0.999i)13-s + (−0.587 + 0.809i)15-s + (−0.743 − 0.669i)17-s + (0.725 − 0.688i)19-s + (−0.477 − 0.878i)21-s + (0.453 − 0.891i)23-s + (0.965 + 0.258i)25-s + (−0.996 + 0.0784i)27-s + (0.972 − 0.233i)29-s + (0.809 − 0.587i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.598 - 0.801i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.598 - 0.801i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7322715688 - 1.461351590i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7322715688 - 1.461351590i\) |
\(L(1)\) |
\(\approx\) |
\(1.008880935 - 0.5609242693i\) |
\(L(1)\) |
\(\approx\) |
\(1.008880935 - 0.5609242693i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 31 | \( 1 \) |
good | 3 | \( 1 + (0.477 - 0.878i)T \) |
| 5 | \( 1 + (-0.991 - 0.130i)T \) |
| 7 | \( 1 + (0.544 - 0.838i)T \) |
| 11 | \( 1 + (0.902 + 0.430i)T \) |
| 13 | \( 1 + (0.0261 + 0.999i)T \) |
| 17 | \( 1 + (-0.743 - 0.669i)T \) |
| 19 | \( 1 + (0.725 - 0.688i)T \) |
| 23 | \( 1 + (0.453 - 0.891i)T \) |
| 29 | \( 1 + (0.972 - 0.233i)T \) |
| 37 | \( 1 + (0.608 - 0.793i)T \) |
| 41 | \( 1 + (-0.629 + 0.777i)T \) |
| 43 | \( 1 + (-0.999 - 0.0261i)T \) |
| 47 | \( 1 + (-0.587 + 0.809i)T \) |
| 53 | \( 1 + (0.983 - 0.182i)T \) |
| 59 | \( 1 + (0.958 - 0.284i)T \) |
| 61 | \( 1 + (0.923 + 0.382i)T \) |
| 67 | \( 1 + (-0.793 + 0.608i)T \) |
| 71 | \( 1 + (0.838 - 0.544i)T \) |
| 73 | \( 1 + (0.0523 - 0.998i)T \) |
| 79 | \( 1 + (-0.743 - 0.669i)T \) |
| 83 | \( 1 + (0.958 + 0.284i)T \) |
| 89 | \( 1 + (-0.453 - 0.891i)T \) |
| 97 | \( 1 + (-0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.053727450504259661002254828133, −19.72495776939731820023008609122, −18.92551217439026300201246216856, −18.11105676233010900872739994815, −17.21105392648310002984613718121, −16.42753890503372041827357752750, −15.59444811560865747064329737495, −15.20773730035904274391012278471, −14.64078943751049538675906700550, −13.82409740426603190038180453748, −12.84585624163649601256038136946, −11.74903759657259449800977293146, −11.50472616500297045246278485503, −10.56709574729514972038718557797, −9.81677548985014650576062258534, −8.70835008155685114262536959704, −8.46445029652876257433383441911, −7.70311825682162404847980904586, −6.59042652592421171564425586231, −5.50129452402244005605725144603, −4.906712783421080163883847919407, −3.84482974265718748304143182429, −3.3894413234060204862784700422, −2.46636627441627169816854525621, −1.21781004160931367920060128484,
0.60223325711001473151977891321, 1.398297076212252792320957147992, 2.446957831470771253004322622209, 3.45041570928614053655997632540, 4.33571691231624151162656067524, 4.83545101530314115343621103596, 6.501342025779935752234306143763, 6.95670662263984022563506500271, 7.495824414170708230016254928204, 8.4532557996000548261301086567, 8.96090909302737674583744408682, 9.89756229497046119756770096144, 11.27642990010555816187805153774, 11.507916482714384354941122362008, 12.24753640527230260062572628629, 13.18850235408784454360518451522, 13.84566006974989711323798378853, 14.54811478078250778224478947124, 15.08223119632061141062061446218, 16.20114657481352053060077126892, 16.767120929185605916088399056139, 17.756134299449127227077717451620, 18.177777266704860916799632122064, 19.27532920583504794218384058094, 19.613158638889253523401904495207