L(s) = 1 | + (0.999 + 0.0261i)3-s + (−0.608 − 0.793i)5-s + (−0.998 + 0.0523i)7-s + (0.998 + 0.0523i)9-s + (0.824 + 0.566i)11-s + (0.878 − 0.477i)13-s + (−0.587 − 0.809i)15-s + (−0.207 − 0.978i)17-s + (0.958 − 0.284i)19-s + (−0.999 + 0.0261i)21-s + (0.453 + 0.891i)23-s + (−0.258 + 0.965i)25-s + (0.996 + 0.0784i)27-s + (−0.972 − 0.233i)29-s + (0.809 + 0.587i)33-s + ⋯ |
L(s) = 1 | + (0.999 + 0.0261i)3-s + (−0.608 − 0.793i)5-s + (−0.998 + 0.0523i)7-s + (0.998 + 0.0523i)9-s + (0.824 + 0.566i)11-s + (0.878 − 0.477i)13-s + (−0.587 − 0.809i)15-s + (−0.207 − 0.978i)17-s + (0.958 − 0.284i)19-s + (−0.999 + 0.0261i)21-s + (0.453 + 0.891i)23-s + (−0.258 + 0.965i)25-s + (0.996 + 0.0784i)27-s + (−0.972 − 0.233i)29-s + (0.809 + 0.587i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.774 - 0.631i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.774 - 0.631i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.026966465 - 0.7216842182i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.026966465 - 0.7216842182i\) |
\(L(1)\) |
\(\approx\) |
\(1.373309214 - 0.2134776374i\) |
\(L(1)\) |
\(\approx\) |
\(1.373309214 - 0.2134776374i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 31 | \( 1 \) |
good | 3 | \( 1 + (0.999 + 0.0261i)T \) |
| 5 | \( 1 + (-0.608 - 0.793i)T \) |
| 7 | \( 1 + (-0.998 + 0.0523i)T \) |
| 11 | \( 1 + (0.824 + 0.566i)T \) |
| 13 | \( 1 + (0.878 - 0.477i)T \) |
| 17 | \( 1 + (-0.207 - 0.978i)T \) |
| 19 | \( 1 + (0.958 - 0.284i)T \) |
| 23 | \( 1 + (0.453 + 0.891i)T \) |
| 29 | \( 1 + (-0.972 - 0.233i)T \) |
| 37 | \( 1 + (0.991 - 0.130i)T \) |
| 41 | \( 1 + (-0.358 + 0.933i)T \) |
| 43 | \( 1 + (-0.477 + 0.878i)T \) |
| 47 | \( 1 + (-0.587 - 0.809i)T \) |
| 53 | \( 1 + (0.333 + 0.942i)T \) |
| 59 | \( 1 + (0.725 - 0.688i)T \) |
| 61 | \( 1 + (-0.923 + 0.382i)T \) |
| 67 | \( 1 + (0.130 - 0.991i)T \) |
| 71 | \( 1 + (0.0523 - 0.998i)T \) |
| 73 | \( 1 + (0.838 - 0.544i)T \) |
| 79 | \( 1 + (-0.207 - 0.978i)T \) |
| 83 | \( 1 + (0.725 + 0.688i)T \) |
| 89 | \( 1 + (-0.453 + 0.891i)T \) |
| 97 | \( 1 + (-0.309 - 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.91292631106462658031722500900, −19.30347680750904958775859187276, −18.73946190804542239592975360100, −18.3181236422697445483180738301, −16.95848915195227693496664635762, −16.2079834959803391233383811862, −15.66002723629654336543371416257, −14.80981390919216990558506501042, −14.296244607100789672596459434699, −13.50602248921382973768455017417, −12.85757124909268613702933355293, −11.936853096316864549157208920326, −11.093680791916363109716496399934, −10.330507903083384328652225478475, −9.5110882778207587893100424431, −8.764207056855055642481263229045, −8.14518222938297243296145572253, −7.08508346287949760743424274530, −6.64985317953366563358696020247, −5.817247534331518795128288255740, −4.200383041005504652115184890310, −3.66502029645775263748970135009, −3.18381803639319186919192486531, −2.164943512243989890855635212, −1.016248927180286115246204936074,
0.8140593128007042389205590413, 1.70772811586400017841288455338, 3.042351749801144275020116516469, 3.49646503937932074023245146066, 4.34199015124512912361310538156, 5.214435471240731143932129939831, 6.361751073439555381525379044149, 7.25868724519235880677585210881, 7.82032310415618274925270942031, 8.78875272248632748978525457431, 9.488610584066821988505245755508, 9.67382194385307158419380856774, 11.11088005812323120114080452400, 11.856468420823363983804820889911, 12.69127982798946573446397849383, 13.35647777476084031857552510056, 13.764692653019710041265530435625, 15.11869720328001745753401574637, 15.308845338431884314838753409196, 16.284212220022579514590597474639, 16.60355322223451075195599839671, 17.91056805222805457560575421223, 18.53436059264039323622699815258, 19.4616035657307687554698428688, 19.95910520422216110448759354668