L(s) = 1 | + (0.902 − 0.430i)3-s + (0.991 + 0.130i)5-s + (−0.629 − 0.777i)7-s + (0.629 − 0.777i)9-s + (−0.688 + 0.725i)11-s + (−0.566 + 0.824i)13-s + (0.951 − 0.309i)15-s + (0.406 − 0.913i)17-s + (0.182 − 0.983i)19-s + (−0.902 − 0.430i)21-s + (0.987 + 0.156i)23-s + (0.965 + 0.258i)25-s + (0.233 − 0.972i)27-s + (0.649 − 0.760i)29-s + (−0.309 + 0.951i)33-s + ⋯ |
L(s) = 1 | + (0.902 − 0.430i)3-s + (0.991 + 0.130i)5-s + (−0.629 − 0.777i)7-s + (0.629 − 0.777i)9-s + (−0.688 + 0.725i)11-s + (−0.566 + 0.824i)13-s + (0.951 − 0.309i)15-s + (0.406 − 0.913i)17-s + (0.182 − 0.983i)19-s + (−0.902 − 0.430i)21-s + (0.987 + 0.156i)23-s + (0.965 + 0.258i)25-s + (0.233 − 0.972i)27-s + (0.649 − 0.760i)29-s + (−0.309 + 0.951i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.345 - 0.938i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.345 - 0.938i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.033491213 - 1.417493802i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.033491213 - 1.417493802i\) |
\(L(1)\) |
\(\approx\) |
\(1.509282428 - 0.4287459277i\) |
\(L(1)\) |
\(\approx\) |
\(1.509282428 - 0.4287459277i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 31 | \( 1 \) |
good | 3 | \( 1 + (0.902 - 0.430i)T \) |
| 5 | \( 1 + (0.991 + 0.130i)T \) |
| 7 | \( 1 + (-0.629 - 0.777i)T \) |
| 11 | \( 1 + (-0.688 + 0.725i)T \) |
| 13 | \( 1 + (-0.566 + 0.824i)T \) |
| 17 | \( 1 + (0.406 - 0.913i)T \) |
| 19 | \( 1 + (0.182 - 0.983i)T \) |
| 23 | \( 1 + (0.987 + 0.156i)T \) |
| 29 | \( 1 + (0.649 - 0.760i)T \) |
| 37 | \( 1 + (-0.608 + 0.793i)T \) |
| 41 | \( 1 + (0.0523 - 0.998i)T \) |
| 43 | \( 1 + (-0.824 + 0.566i)T \) |
| 47 | \( 1 + (0.951 - 0.309i)T \) |
| 53 | \( 1 + (-0.477 - 0.878i)T \) |
| 59 | \( 1 + (0.942 + 0.333i)T \) |
| 61 | \( 1 + (-0.923 - 0.382i)T \) |
| 67 | \( 1 + (0.793 - 0.608i)T \) |
| 71 | \( 1 + (0.777 + 0.629i)T \) |
| 73 | \( 1 + (-0.933 - 0.358i)T \) |
| 79 | \( 1 + (0.406 - 0.913i)T \) |
| 83 | \( 1 + (0.942 - 0.333i)T \) |
| 89 | \( 1 + (-0.987 + 0.156i)T \) |
| 97 | \( 1 + (0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.17714692922771384108476675088, −19.34807299656100115934537441020, −18.736756262868708102885838004535, −18.12529378284127305289407678174, −17.05250917675199411449034321048, −16.424508424659191316754644349, −15.65793739070033747885068897660, −14.94831525652432151633792357437, −14.30187752490493933260153746161, −13.5314253239008415395655852048, −12.75260080348558932625638761539, −12.42641022173571381378948445633, −10.85622857783077282542708381632, −10.25341568083312335035090164860, −9.72802404576520777276451792988, −8.818473737144363484557357883968, −8.37436148456925691210935127978, −7.43175656400494575504691848920, −6.304942667187600673166350637318, −5.51196305532321032381770367963, −5.00819777995848755631473465586, −3.60905464895003314513810599789, −2.944674327353706749723598951860, −2.33729841571080523034668308778, −1.25711551070225886829985119254,
0.762383948793151093935016815323, 1.876267292169908207290147117070, 2.6353837145026309956868987307, 3.26129845729706183380969221915, 4.4970578660479862645133092046, 5.17572477025922461748612741396, 6.5306700709903370546338846040, 6.99013892515525374549264803193, 7.54414148283939241334148317010, 8.71442456561022107047594616579, 9.57325636574967113742364256853, 9.80105982001343502717446026667, 10.69763685383392496285007760164, 11.87999809298489406684504141911, 12.70075042168759621801279312182, 13.4967022766449650764553169392, 13.70838803222003452036359946743, 14.54598122048364681268549949416, 15.339078896712484760643627676940, 16.13509036145009606656974774318, 17.14122262512504052307944429270, 17.60431039200437580470565722680, 18.51977145894582017939197459374, 19.08041392217042336043922386591, 19.8419811006627090767623037500