L(s) = 1 | + (0.939 − 0.342i)3-s + (−0.766 − 0.642i)5-s + 7-s + (0.766 − 0.642i)9-s − 11-s + (−0.939 − 0.342i)15-s + (0.173 − 0.984i)17-s + (0.939 − 0.342i)21-s + (−0.939 − 0.342i)23-s + (0.173 + 0.984i)25-s + (0.5 − 0.866i)27-s + (−0.173 − 0.984i)29-s + (−0.5 − 0.866i)31-s + (−0.939 + 0.342i)33-s + (−0.766 − 0.642i)35-s + ⋯ |
L(s) = 1 | + (0.939 − 0.342i)3-s + (−0.766 − 0.642i)5-s + 7-s + (0.766 − 0.642i)9-s − 11-s + (−0.939 − 0.342i)15-s + (0.173 − 0.984i)17-s + (0.939 − 0.342i)21-s + (−0.939 − 0.342i)23-s + (0.173 + 0.984i)25-s + (0.5 − 0.866i)27-s + (−0.173 − 0.984i)29-s + (−0.5 − 0.866i)31-s + (−0.939 + 0.342i)33-s + (−0.766 − 0.642i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1976 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.700 - 0.713i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1976 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.700 - 0.713i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6211104016 - 1.479795867i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6211104016 - 1.479795867i\) |
\(L(1)\) |
\(\approx\) |
\(1.136256992 - 0.5026217305i\) |
\(L(1)\) |
\(\approx\) |
\(1.136256992 - 0.5026217305i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.939 - 0.342i)T \) |
| 5 | \( 1 + (-0.766 - 0.642i)T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 - T \) |
| 17 | \( 1 + (0.173 - 0.984i)T \) |
| 23 | \( 1 + (-0.939 - 0.342i)T \) |
| 29 | \( 1 + (-0.173 - 0.984i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.939 + 0.342i)T \) |
| 43 | \( 1 + (0.939 - 0.342i)T \) |
| 47 | \( 1 + (-0.939 - 0.342i)T \) |
| 53 | \( 1 + (-0.766 + 0.642i)T \) |
| 59 | \( 1 + (-0.173 + 0.984i)T \) |
| 61 | \( 1 + (-0.173 - 0.984i)T \) |
| 67 | \( 1 + (-0.173 - 0.984i)T \) |
| 71 | \( 1 + (-0.939 + 0.342i)T \) |
| 73 | \( 1 + (0.173 - 0.984i)T \) |
| 79 | \( 1 + (0.173 - 0.984i)T \) |
| 83 | \( 1 + (0.5 + 0.866i)T \) |
| 89 | \( 1 + (0.766 - 0.642i)T \) |
| 97 | \( 1 + (0.173 - 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.21390557909493195986636985878, −19.58979543231736098855399857572, −18.868025703244461788515520043941, −18.18320530648091061526779317766, −17.56821366648644350853004828932, −16.19188777067175038082585385260, −15.884774730572318130579826754486, −14.86298217724055836583990550268, −14.646364027770045507754331547851, −13.87965862069858486192161952682, −12.926415840228818615829440510659, −12.1877783575378684546094012628, −11.07505120490211678798562158113, −10.67756971106587389064190411706, −9.93279858486970982630077596858, −8.803012219766770428381408509791, −8.110045075467209984948359901241, −7.71542218121579360489763372568, −6.920299405127560401205594354251, −5.629239495194398634288940031697, −4.756398995706076693501120662, −3.94528766144372850118915744087, −3.2579442477347897528079043834, −2.33251383764490290760468975405, −1.51541182045485392602545611489,
0.46021731900085176716955169324, 1.60599557605970994296066780785, 2.43851934389615271554793357993, 3.36846031296153794228426271114, 4.37428360281750265311364770491, 4.87315196051689631701321161301, 5.963726376723185540618183849251, 7.23441511806773362815493846478, 7.9252185385050033178189251064, 8.10965309777984077861436037371, 9.08876597547088162103897446289, 9.83348487771707589616513531484, 10.86262764821905798242914787969, 11.76714097706774024888808375201, 12.258134405486288691838565615095, 13.28163771875448950455738666812, 13.689849073059252676428712558484, 14.67393232625259874651001024714, 15.25480751822089934074486083890, 15.899950801082227400413961312393, 16.69528801133203419000429904095, 17.705382360393858418895431405793, 18.48039068575170236206310039331, 18.85272090360409509405359749980, 19.90984217727469092441213438260