L(s) = 1 | + (0.766 − 0.642i)3-s + (0.642 + 0.766i)5-s + (−0.866 + 0.5i)7-s + (0.173 − 0.984i)9-s + (−0.866 − 0.5i)11-s + (0.984 + 0.173i)15-s + (−0.766 + 0.642i)17-s + (−0.342 + 0.939i)21-s + (0.173 − 0.984i)23-s + (−0.173 + 0.984i)25-s + (−0.5 − 0.866i)27-s + (−0.766 − 0.642i)29-s + (−0.866 − 0.5i)31-s + (−0.984 + 0.173i)33-s + (−0.939 − 0.342i)35-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)3-s + (0.642 + 0.766i)5-s + (−0.866 + 0.5i)7-s + (0.173 − 0.984i)9-s + (−0.866 − 0.5i)11-s + (0.984 + 0.173i)15-s + (−0.766 + 0.642i)17-s + (−0.342 + 0.939i)21-s + (0.173 − 0.984i)23-s + (−0.173 + 0.984i)25-s + (−0.5 − 0.866i)27-s + (−0.766 − 0.642i)29-s + (−0.866 − 0.5i)31-s + (−0.984 + 0.173i)33-s + (−0.939 − 0.342i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1976 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.891 - 0.452i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1976 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.891 - 0.452i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1527338023 - 0.6390805034i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1527338023 - 0.6390805034i\) |
\(L(1)\) |
\(\approx\) |
\(1.013463320 - 0.1868470455i\) |
\(L(1)\) |
\(\approx\) |
\(1.013463320 - 0.1868470455i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.766 - 0.642i)T \) |
| 5 | \( 1 + (0.642 + 0.766i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.866 - 0.5i)T \) |
| 17 | \( 1 + (-0.766 + 0.642i)T \) |
| 23 | \( 1 + (0.173 - 0.984i)T \) |
| 29 | \( 1 + (-0.766 - 0.642i)T \) |
| 31 | \( 1 + (-0.866 - 0.5i)T \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + (-0.642 - 0.766i)T \) |
| 43 | \( 1 + (-0.173 - 0.984i)T \) |
| 47 | \( 1 + (0.342 + 0.939i)T \) |
| 53 | \( 1 + (-0.766 - 0.642i)T \) |
| 59 | \( 1 + (0.642 + 0.766i)T \) |
| 61 | \( 1 + (0.939 - 0.342i)T \) |
| 67 | \( 1 + (0.642 - 0.766i)T \) |
| 71 | \( 1 + (-0.984 + 0.173i)T \) |
| 73 | \( 1 + (-0.984 + 0.173i)T \) |
| 79 | \( 1 + (-0.173 - 0.984i)T \) |
| 83 | \( 1 + (0.866 + 0.5i)T \) |
| 89 | \( 1 + (-0.342 - 0.939i)T \) |
| 97 | \( 1 + (-0.642 - 0.766i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.36351046688304511161352463145, −19.82765410360357106761172507114, −19.00045894583937433651047317424, −18.04074391567292876020004673209, −17.32594539458865762970827157534, −16.338505612530724189105750577226, −16.075818799756515079943800205213, −15.271455793616433639576980661074, −14.38553042079150675022131916393, −13.46380908743272530835702113722, −13.218890870511548630695414100212, −12.47832492612524921798628810255, −11.19488420886174910661790356016, −10.3822755748779088640369724348, −9.71648819905360354999438226188, −9.23496988042302620125559793280, −8.48230485177506202799447621388, −7.49490481534498682604847792080, −6.82207470588604265940049135324, −5.51429359030194782232915855111, −5.01014495908037624020637297700, −4.09072492319648178557049179912, −3.24096094107061705365061326258, −2.37638648334021988346623959151, −1.47848181991163224608547375364,
0.17594784242743019999967947906, 1.84198483294427296777070980930, 2.42114297167507147544679469726, 3.14111317664670622720516111182, 3.90385637477643859821674246479, 5.406645611296201591259185573920, 6.139511875927764434688860553570, 6.749117238738325240450040877, 7.50611914939452110276744185262, 8.51916972799253353544720580948, 9.05400085136079299246832708882, 9.96249384054103646284698319939, 10.59419958366136548191488385773, 11.5478533106975631325226403702, 12.621571728094757559514585157858, 13.1179675428272023942689507374, 13.66442549641632756178489074553, 14.509437561572752352838197840964, 15.22129865824289766781403915576, 15.76758885591781255369169466330, 16.874179176189613756392976207876, 17.69066510499952408062700746070, 18.46685059143494709140684243388, 18.922851190383583656777009816655, 19.352297282144286713620347104919