L(s) = 1 | + (0.766 + 0.642i)3-s + (−0.642 + 0.766i)5-s + (0.866 + 0.5i)7-s + (0.173 + 0.984i)9-s + (0.866 − 0.5i)11-s + (−0.984 + 0.173i)15-s + (−0.766 − 0.642i)17-s + (0.342 + 0.939i)21-s + (0.173 + 0.984i)23-s + (−0.173 − 0.984i)25-s + (−0.5 + 0.866i)27-s + (−0.766 + 0.642i)29-s + (0.866 − 0.5i)31-s + (0.984 + 0.173i)33-s + (−0.939 + 0.342i)35-s + ⋯ |
L(s) = 1 | + (0.766 + 0.642i)3-s + (−0.642 + 0.766i)5-s + (0.866 + 0.5i)7-s + (0.173 + 0.984i)9-s + (0.866 − 0.5i)11-s + (−0.984 + 0.173i)15-s + (−0.766 − 0.642i)17-s + (0.342 + 0.939i)21-s + (0.173 + 0.984i)23-s + (−0.173 − 0.984i)25-s + (−0.5 + 0.866i)27-s + (−0.766 + 0.642i)29-s + (0.866 − 0.5i)31-s + (0.984 + 0.173i)33-s + (−0.939 + 0.342i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1976 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.491 + 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1976 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.491 + 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.049823574 + 1.797563488i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.049823574 + 1.797563488i\) |
\(L(1)\) |
\(\approx\) |
\(1.211251733 + 0.6584056260i\) |
\(L(1)\) |
\(\approx\) |
\(1.211251733 + 0.6584056260i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.766 + 0.642i)T \) |
| 5 | \( 1 + (-0.642 + 0.766i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (0.866 - 0.5i)T \) |
| 17 | \( 1 + (-0.766 - 0.642i)T \) |
| 23 | \( 1 + (0.173 + 0.984i)T \) |
| 29 | \( 1 + (-0.766 + 0.642i)T \) |
| 31 | \( 1 + (0.866 - 0.5i)T \) |
| 37 | \( 1 + (0.866 + 0.5i)T \) |
| 41 | \( 1 + (0.642 - 0.766i)T \) |
| 43 | \( 1 + (-0.173 + 0.984i)T \) |
| 47 | \( 1 + (-0.342 + 0.939i)T \) |
| 53 | \( 1 + (-0.766 + 0.642i)T \) |
| 59 | \( 1 + (-0.642 + 0.766i)T \) |
| 61 | \( 1 + (0.939 + 0.342i)T \) |
| 67 | \( 1 + (-0.642 - 0.766i)T \) |
| 71 | \( 1 + (0.984 + 0.173i)T \) |
| 73 | \( 1 + (0.984 + 0.173i)T \) |
| 79 | \( 1 + (-0.173 + 0.984i)T \) |
| 83 | \( 1 + (-0.866 + 0.5i)T \) |
| 89 | \( 1 + (0.342 - 0.939i)T \) |
| 97 | \( 1 + (0.642 - 0.766i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.80321214003879104044321833055, −19.22251188821788778184189709408, −18.33423665308780024855296547020, −17.46391172765552145846266108026, −17.0546131715840880899023022500, −16.05517813125330783696810545449, −15.04812285294421290624590529936, −14.73072489022294360201509828615, −13.84474124737616053424925917165, −13.07866154467249598995935940062, −12.45063247768099950797342462989, −11.7061220133819025574310122297, −11.03029360835848055746584646693, −9.85723926027040627355545947131, −9.01423510913319448538054866904, −8.37179786371111511202530994422, −7.83611006043929163417201041721, −7.001478980307964841072204936, −6.280792573178642655078905066854, −4.92693799631776687622932065113, −4.210693805051733148474914715545, −3.660185757645795445139162798828, −2.28783228346452947590894484789, −1.56109565612703718361443550475, −0.67337534641963102063674350386,
1.36285391841218798148545735081, 2.46859116282117016129980421430, 3.1128723232784458430762541786, 4.04568628439115059213560382162, 4.63022354632450691225650628319, 5.673370219132460448204244943220, 6.69439078877635841210648968041, 7.64356356915052326742254589976, 8.14951639189067765277561290141, 9.08132168786627946866010187229, 9.55574378022285298294334895302, 10.75631212291106095208710437483, 11.28363237690798665412135826569, 11.759617957785383763256531659331, 12.985238062343391040735479219558, 14.03896238869010234006785247853, 14.30349191088009190799269179777, 15.227703053455023279619264631515, 15.51581841451498388091165474552, 16.415364608116636148527316112264, 17.31017952540154266617725939729, 18.21623941052217364939770855846, 18.849207432614868599256435264737, 19.5963715030143595226889551901, 20.0925590678376269353724210099