L(s) = 1 | + (0.766 + 0.642i)3-s + (0.342 + 0.939i)5-s + (0.866 − 0.5i)7-s + (0.173 + 0.984i)9-s + (0.866 + 0.5i)11-s + (−0.342 + 0.939i)15-s + (−0.173 + 0.984i)17-s + (0.984 + 0.173i)21-s + (−0.939 − 0.342i)23-s + (−0.766 + 0.642i)25-s + (−0.5 + 0.866i)27-s + (−0.173 − 0.984i)29-s + (−0.866 + 0.5i)31-s + (0.342 + 0.939i)33-s + (0.766 + 0.642i)35-s + ⋯ |
L(s) = 1 | + (0.766 + 0.642i)3-s + (0.342 + 0.939i)5-s + (0.866 − 0.5i)7-s + (0.173 + 0.984i)9-s + (0.866 + 0.5i)11-s + (−0.342 + 0.939i)15-s + (−0.173 + 0.984i)17-s + (0.984 + 0.173i)21-s + (−0.939 − 0.342i)23-s + (−0.766 + 0.642i)25-s + (−0.5 + 0.866i)27-s + (−0.173 − 0.984i)29-s + (−0.866 + 0.5i)31-s + (0.342 + 0.939i)33-s + (0.766 + 0.642i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1976 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.379 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1976 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.379 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.413759215 + 2.107340748i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.413759215 + 2.107340748i\) |
\(L(1)\) |
\(\approx\) |
\(1.408102737 + 0.7463308568i\) |
\(L(1)\) |
\(\approx\) |
\(1.408102737 + 0.7463308568i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.766 + 0.642i)T \) |
| 5 | \( 1 + (0.342 + 0.939i)T \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.866 + 0.5i)T \) |
| 17 | \( 1 + (-0.173 + 0.984i)T \) |
| 23 | \( 1 + (-0.939 - 0.342i)T \) |
| 29 | \( 1 + (-0.173 - 0.984i)T \) |
| 31 | \( 1 + (-0.866 + 0.5i)T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + (-0.642 + 0.766i)T \) |
| 43 | \( 1 + (0.939 - 0.342i)T \) |
| 47 | \( 1 + (-0.984 + 0.173i)T \) |
| 53 | \( 1 + (0.939 + 0.342i)T \) |
| 59 | \( 1 + (-0.984 - 0.173i)T \) |
| 61 | \( 1 + (0.939 + 0.342i)T \) |
| 67 | \( 1 + (-0.984 + 0.173i)T \) |
| 71 | \( 1 + (0.342 + 0.939i)T \) |
| 73 | \( 1 + (0.642 - 0.766i)T \) |
| 79 | \( 1 + (-0.766 - 0.642i)T \) |
| 83 | \( 1 + (0.866 - 0.5i)T \) |
| 89 | \( 1 + (-0.642 - 0.766i)T \) |
| 97 | \( 1 + (0.984 + 0.173i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.90295733409962871762824638253, −19.093727470684116426319880597636, −18.096984999927597109224209164954, −17.88888987220775567876801797761, −16.86537306518837390167387809295, −16.13806704283377085252123655875, −15.27358788882340582158703322953, −14.3213899943558179081291782284, −14.02149761977464243208576468775, −13.184653839395510109871013754009, −12.353119182785549747601489817504, −11.8434214610162901021164063836, −11.03804420044432314796157167389, −9.66118250646076267240653650841, −9.10208526880583444149415963198, −8.58211327064546621450771759231, −7.82308837680217374873107887616, −7.01902599691933979079576808708, −5.96818108824042160733101184413, −5.30745780846460004217720888563, −4.28941926523823715110158283667, −3.45957866764533685269184550707, −2.23617939198744407407001455616, −1.697469637052975445275642442715, −0.75338148005353513280928468353,
1.60585240993962861283736594512, 2.10591581761685235314584196219, 3.23514417215683315232590669933, 4.01922756672363355113670150238, 4.58128061660335540597488711887, 5.74923385346656817971479873968, 6.64847001445942627020909721483, 7.504045485892585522068120986328, 8.171858605963707418851506565061, 9.00974623990166521666383834774, 9.95001329176070421453262838729, 10.36920274040700616949983952668, 11.156659352863552653794737158128, 11.892371942235079474635931233306, 13.12356706752710568484739560897, 13.84233692789815546417030119573, 14.52491784023603792028924574685, 14.84131886611797357213620441504, 15.57059068767623065522577863216, 16.66211300543001221326788997638, 17.28652719814212193713021496857, 17.99855888754528623186695641584, 18.82227306944558863139153272971, 19.65002823402930839058265794515, 20.15850408838425476208615087661