L(s) = 1 | + (0.939 − 0.342i)3-s + (−0.766 − 0.642i)5-s − 7-s + (0.766 − 0.642i)9-s + 11-s + (−0.939 − 0.342i)15-s + (0.173 − 0.984i)17-s + (−0.939 + 0.342i)21-s + (0.939 + 0.342i)23-s + (0.173 + 0.984i)25-s + (0.5 − 0.866i)27-s + (0.173 + 0.984i)29-s + (−0.5 − 0.866i)31-s + (0.939 − 0.342i)33-s + (0.766 + 0.642i)35-s + ⋯ |
L(s) = 1 | + (0.939 − 0.342i)3-s + (−0.766 − 0.642i)5-s − 7-s + (0.766 − 0.642i)9-s + 11-s + (−0.939 − 0.342i)15-s + (0.173 − 0.984i)17-s + (−0.939 + 0.342i)21-s + (0.939 + 0.342i)23-s + (0.173 + 0.984i)25-s + (0.5 − 0.866i)27-s + (0.173 + 0.984i)29-s + (−0.5 − 0.866i)31-s + (0.939 − 0.342i)33-s + (0.766 + 0.642i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1976 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.242 - 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1976 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.242 - 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.071550431 - 1.372508717i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.071550431 - 1.372508717i\) |
\(L(1)\) |
\(\approx\) |
\(1.150452437 - 0.4434284949i\) |
\(L(1)\) |
\(\approx\) |
\(1.150452437 - 0.4434284949i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.939 - 0.342i)T \) |
| 5 | \( 1 + (-0.766 - 0.642i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + T \) |
| 17 | \( 1 + (0.173 - 0.984i)T \) |
| 23 | \( 1 + (0.939 + 0.342i)T \) |
| 29 | \( 1 + (0.173 + 0.984i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.939 - 0.342i)T \) |
| 43 | \( 1 + (-0.939 + 0.342i)T \) |
| 47 | \( 1 + (0.939 + 0.342i)T \) |
| 53 | \( 1 + (0.766 - 0.642i)T \) |
| 59 | \( 1 + (-0.173 + 0.984i)T \) |
| 61 | \( 1 + (-0.173 - 0.984i)T \) |
| 67 | \( 1 + (-0.173 - 0.984i)T \) |
| 71 | \( 1 + (-0.939 + 0.342i)T \) |
| 73 | \( 1 + (0.173 - 0.984i)T \) |
| 79 | \( 1 + (0.173 - 0.984i)T \) |
| 83 | \( 1 + (-0.5 - 0.866i)T \) |
| 89 | \( 1 + (-0.766 + 0.642i)T \) |
| 97 | \( 1 + (-0.173 + 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.93500138393415837896576304122, −19.44325377158038079795732504284, −19.07159287423596043843365484207, −18.30711601650367530170342335734, −17.04334984220487518577637395605, −16.491158785727942053779645305263, −15.53062609053705048655623729186, −15.171062453751473822207988006964, −14.42158454430434680908419484850, −13.73618939199810874475628501371, −12.832873200553201997311372449852, −12.17902813152766991821016089026, −11.20399165396149588843521130423, −10.36083808729021006236856967754, −9.80652904818342725372482083771, −8.83149712890283064283952787363, −8.36929788051496690455769604274, −7.23380564286606012483990077674, −6.8216034225858839280432202121, −5.85801565163524532964380625024, −4.46241247295878256436890155312, −3.835967960749246166377055540217, −3.21815058631509205075947629362, −2.47203893808739852517691057214, −1.20519765253358528045176400233,
0.58635811710371926827487799414, 1.51558004646008771194086472186, 2.74806858826753374644602346288, 3.50005362517626070715189901536, 4.07942566508745739962974981885, 5.11271666931337089543398440235, 6.26377453722004975960507385433, 7.19134283585408056132245344790, 7.51609204840871707095464406027, 8.77635870409176648114529875687, 9.09565699064247500936182974792, 9.71734314796761441694816522419, 10.914396441831932618770941889226, 11.91229530375275580652309702130, 12.43229722991977051545314536101, 13.14444479952988962513415386543, 13.80979272407644549337566027817, 14.70009289677127242703316000539, 15.323831819238352974972980722297, 16.17566811320433954924665084261, 16.5921903027108271399816345984, 17.631218188565369851362926137779, 18.63709746235946413094714534697, 19.19628526969917769823205800568, 19.7723768367468647860431155571