| L(s) = 1 | + (0.995 − 0.0950i)5-s + (0.327 + 0.945i)11-s + (0.959 − 0.281i)13-s + (−0.928 − 0.371i)17-s + (−0.928 + 0.371i)19-s + (0.981 − 0.189i)25-s + (0.142 + 0.989i)29-s + (0.0475 + 0.998i)31-s + (−0.580 + 0.814i)37-s + (0.415 − 0.909i)41-s + (0.841 + 0.540i)43-s + (0.5 + 0.866i)47-s + (0.723 − 0.690i)53-s + (0.415 + 0.909i)55-s + (−0.235 + 0.971i)59-s + ⋯ |
| L(s) = 1 | + (0.995 − 0.0950i)5-s + (0.327 + 0.945i)11-s + (0.959 − 0.281i)13-s + (−0.928 − 0.371i)17-s + (−0.928 + 0.371i)19-s + (0.981 − 0.189i)25-s + (0.142 + 0.989i)29-s + (0.0475 + 0.998i)31-s + (−0.580 + 0.814i)37-s + (0.415 − 0.909i)41-s + (0.841 + 0.540i)43-s + (0.5 + 0.866i)47-s + (0.723 − 0.690i)53-s + (0.415 + 0.909i)55-s + (−0.235 + 0.971i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1932 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.721 + 0.692i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1932 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.721 + 0.692i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.840160020 + 0.7396437490i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.840160020 + 0.7396437490i\) |
| \(L(1)\) |
\(\approx\) |
\(1.295032979 + 0.1544417507i\) |
| \(L(1)\) |
\(\approx\) |
\(1.295032979 + 0.1544417507i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 23 | \( 1 \) |
| good | 5 | \( 1 + (0.995 - 0.0950i)T \) |
| 11 | \( 1 + (0.327 + 0.945i)T \) |
| 13 | \( 1 + (0.959 - 0.281i)T \) |
| 17 | \( 1 + (-0.928 - 0.371i)T \) |
| 19 | \( 1 + (-0.928 + 0.371i)T \) |
| 29 | \( 1 + (0.142 + 0.989i)T \) |
| 31 | \( 1 + (0.0475 + 0.998i)T \) |
| 37 | \( 1 + (-0.580 + 0.814i)T \) |
| 41 | \( 1 + (0.415 - 0.909i)T \) |
| 43 | \( 1 + (0.841 + 0.540i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.723 - 0.690i)T \) |
| 59 | \( 1 + (-0.235 + 0.971i)T \) |
| 61 | \( 1 + (-0.888 - 0.458i)T \) |
| 67 | \( 1 + (0.981 - 0.189i)T \) |
| 71 | \( 1 + (-0.654 - 0.755i)T \) |
| 73 | \( 1 + (0.786 + 0.618i)T \) |
| 79 | \( 1 + (0.723 + 0.690i)T \) |
| 83 | \( 1 + (0.415 + 0.909i)T \) |
| 89 | \( 1 + (-0.0475 + 0.998i)T \) |
| 97 | \( 1 + (0.415 - 0.909i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.95485598746847017989700641484, −19.0600414894174625538610062873, −18.56862585229112640339097234217, −17.62673306944493119658323696874, −17.14442631107192008069285612997, −16.38157130188635695756604751926, −15.54434640517749034260228808874, −14.77291526889597170153730801859, −13.83165088927126049753595516330, −13.46786999670371005360314289694, −12.76832140264797493038793032724, −11.63255617025841610536333270777, −10.91597488358037150639383106687, −10.40147504023751815058654260977, −9.22266435858083607361188723582, −8.883314499056426243210867496571, −7.999305692810783953483082747217, −6.76662587047996175625206882131, −6.1808303044881996942376747079, −5.657962340754832979806485789337, −4.43896209400894408726285172710, −3.72149963474996501413214355645, −2.554173204781458458460251715110, −1.87994825816638165170014381061, −0.72760415879001635217582328369,
1.17752808106882086922311175339, 1.94330978555822548572668108987, 2.81433482428193994500508930005, 3.95520286449601116765407168497, 4.78373510320993423606960641818, 5.61016241943615296518262848398, 6.51579805220900265488655983471, 6.97188342624429595142875943990, 8.22734679909617439211544503866, 8.9587577429937141197140883082, 9.54928594670903736866693957428, 10.5804091714313219256913490525, 10.88686499285872948495769535156, 12.22310374066724337833603565873, 12.696342168574516668710255792530, 13.55783853374179021772367524240, 14.13131042683909710147409217160, 14.97017118318207242671798478902, 15.72189463549264831291459579512, 16.53188260903507661343121637408, 17.37848384589104271496706516194, 17.86036642643618399465661402223, 18.45553938426310746687039114081, 19.46867758148206677129121067860, 20.22973475798127567426299258583