| L(s) = 1 | + (0.676 − 0.736i)2-s + (−0.0855 − 0.996i)4-s + (0.884 + 0.466i)7-s + (−0.791 − 0.610i)8-s + (−0.389 − 0.921i)13-s + (0.941 − 0.336i)14-s + (−0.985 + 0.170i)16-s + (−0.967 − 0.254i)17-s + (0.362 − 0.931i)19-s + (0.989 + 0.142i)23-s + (−0.941 − 0.336i)26-s + (0.389 − 0.921i)28-s + (−0.998 − 0.0570i)29-s + (0.516 + 0.856i)31-s + (−0.540 + 0.841i)32-s + ⋯ |
| L(s) = 1 | + (0.676 − 0.736i)2-s + (−0.0855 − 0.996i)4-s + (0.884 + 0.466i)7-s + (−0.791 − 0.610i)8-s + (−0.389 − 0.921i)13-s + (0.941 − 0.336i)14-s + (−0.985 + 0.170i)16-s + (−0.967 − 0.254i)17-s + (0.362 − 0.931i)19-s + (0.989 + 0.142i)23-s + (−0.941 − 0.336i)26-s + (0.389 − 0.921i)28-s + (−0.998 − 0.0570i)29-s + (0.516 + 0.856i)31-s + (−0.540 + 0.841i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.885 - 0.463i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.885 - 0.463i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4699201409 - 1.910444392i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4699201409 - 1.910444392i\) |
| \(L(1)\) |
\(\approx\) |
\(1.160582492 - 0.8541448358i\) |
| \(L(1)\) |
\(\approx\) |
\(1.160582492 - 0.8541448358i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (0.676 - 0.736i)T \) |
| 7 | \( 1 + (0.884 + 0.466i)T \) |
| 13 | \( 1 + (-0.389 - 0.921i)T \) |
| 17 | \( 1 + (-0.967 - 0.254i)T \) |
| 19 | \( 1 + (0.362 - 0.931i)T \) |
| 23 | \( 1 + (0.989 + 0.142i)T \) |
| 29 | \( 1 + (-0.998 - 0.0570i)T \) |
| 31 | \( 1 + (0.516 + 0.856i)T \) |
| 37 | \( 1 + (-0.226 - 0.974i)T \) |
| 41 | \( 1 + (-0.198 - 0.980i)T \) |
| 43 | \( 1 + (-0.281 - 0.959i)T \) |
| 47 | \( 1 + (0.491 - 0.870i)T \) |
| 53 | \( 1 + (-0.170 + 0.985i)T \) |
| 59 | \( 1 + (0.198 - 0.980i)T \) |
| 61 | \( 1 + (-0.736 + 0.676i)T \) |
| 67 | \( 1 + (-0.909 - 0.415i)T \) |
| 71 | \( 1 + (-0.774 - 0.633i)T \) |
| 73 | \( 1 + (0.717 + 0.696i)T \) |
| 79 | \( 1 + (0.564 - 0.825i)T \) |
| 83 | \( 1 + (-0.441 - 0.897i)T \) |
| 89 | \( 1 + (0.841 + 0.540i)T \) |
| 97 | \( 1 + (0.999 + 0.0285i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.79380021503439385166074220075, −19.94501731527228372052619568783, −18.867339663630549347568048442932, −18.12465669459287928733217285161, −17.27212240841955415950426458719, −16.8143376227308341403273383357, −16.122122107718742536875750046616, −14.92655557008905555137876410737, −14.84107348622850217025290698095, −13.81074695521829906486854129003, −13.33406004221785824177057754627, −12.41270065457007510714016644932, −11.51833622344555639167997001350, −11.10672489984486015650978196641, −9.8470607255709148492269690162, −8.94998750221650985722581180969, −8.14249400078731888639749647605, −7.471430503833552855390902890485, −6.70952732805192806887717862432, −5.93258325426395575191707052881, −4.85157154044740367216202884996, −4.449701996212869608312534671927, −3.546499489076687541928471231819, −2.43736850463913584143980117390, −1.4338272398384578289966016672,
0.52764043303328507786568343334, 1.72735123979184601329017615523, 2.50517214358764409798143005869, 3.29182052428148840464850615031, 4.390716304413808823306334964729, 5.13485517666011287540715093538, 5.59155865078790803190080589287, 6.79363053286233200580960932324, 7.56791143657534412479776397720, 8.8612801444783539140276969452, 9.1769883704832663516596739195, 10.483211179683214722091254804960, 10.879582339648260249585923332101, 11.71958161715717060885342497509, 12.32543304211588961979193331800, 13.20730117355115880444935071169, 13.77191815982987733298219471131, 14.687507751223891270357773162138, 15.30975076779007746964094408352, 15.75027054692118153138982060886, 17.19521724827437171050347982682, 17.78389387886538442864999227850, 18.47091235110806183657192236132, 19.28832855154176631708596358947, 20.066382205894580355906527179323