| L(s) = 1 | + (−0.5 − 0.866i)7-s + (0.978 − 0.207i)11-s + (0.978 + 0.207i)13-s + (−0.809 + 0.587i)17-s + (0.809 − 0.587i)19-s + (0.669 + 0.743i)23-s + (0.104 − 0.994i)29-s + (−0.104 − 0.994i)31-s + (−0.309 − 0.951i)37-s + (−0.978 − 0.207i)41-s + (0.5 + 0.866i)43-s + (−0.104 + 0.994i)47-s + (−0.5 + 0.866i)49-s + (0.809 + 0.587i)53-s + (0.978 + 0.207i)59-s + ⋯ |
| L(s) = 1 | + (−0.5 − 0.866i)7-s + (0.978 − 0.207i)11-s + (0.978 + 0.207i)13-s + (−0.809 + 0.587i)17-s + (0.809 − 0.587i)19-s + (0.669 + 0.743i)23-s + (0.104 − 0.994i)29-s + (−0.104 − 0.994i)31-s + (−0.309 − 0.951i)37-s + (−0.978 − 0.207i)41-s + (0.5 + 0.866i)43-s + (−0.104 + 0.994i)47-s + (−0.5 + 0.866i)49-s + (0.809 + 0.587i)53-s + (0.978 + 0.207i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.709 - 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.709 - 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.539137351 - 0.6343866380i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.539137351 - 0.6343866380i\) |
| \(L(1)\) |
\(\approx\) |
\(1.127699537 - 0.1699743109i\) |
| \(L(1)\) |
\(\approx\) |
\(1.127699537 - 0.1699743109i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.978 - 0.207i)T \) |
| 13 | \( 1 + (0.978 + 0.207i)T \) |
| 17 | \( 1 + (-0.809 + 0.587i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
| 23 | \( 1 + (0.669 + 0.743i)T \) |
| 29 | \( 1 + (0.104 - 0.994i)T \) |
| 31 | \( 1 + (-0.104 - 0.994i)T \) |
| 37 | \( 1 + (-0.309 - 0.951i)T \) |
| 41 | \( 1 + (-0.978 - 0.207i)T \) |
| 43 | \( 1 + (0.5 + 0.866i)T \) |
| 47 | \( 1 + (-0.104 + 0.994i)T \) |
| 53 | \( 1 + (0.809 + 0.587i)T \) |
| 59 | \( 1 + (0.978 + 0.207i)T \) |
| 61 | \( 1 + (0.978 - 0.207i)T \) |
| 67 | \( 1 + (0.104 + 0.994i)T \) |
| 71 | \( 1 + (-0.809 - 0.587i)T \) |
| 73 | \( 1 + (0.309 - 0.951i)T \) |
| 79 | \( 1 + (-0.104 + 0.994i)T \) |
| 83 | \( 1 + (-0.913 - 0.406i)T \) |
| 89 | \( 1 + (0.309 - 0.951i)T \) |
| 97 | \( 1 + (-0.104 + 0.994i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.25752363594922752677308091351, −19.612082058553954488735293279848, −18.622124595646971920145520300579, −18.29613199905518147687771871411, −17.39980757799722454265490485766, −16.44237815116072134325203859774, −15.932001833250789806174999127509, −15.159905991151876446632358064082, −14.4020741740067392764256462241, −13.583810197882318149363251218062, −12.82369023682529745363158632390, −12.00412160776631238253988154579, −11.48496061493442045536301064627, −10.47809918042893482242750317521, −9.68239842649877417420332004547, −8.69423205369664277296292802913, −8.58650345226158927303673443787, −6.98040607544159539397299492847, −6.66357328001665670393378487629, −5.61934949503605124453441773726, −4.917513576346289548671611848588, −3.72830559648413643917371797977, −3.10801576773909111983329432058, −2.019374076790419151817793003289, −1.01733560225682206800048157433,
0.73744058593470975396583039229, 1.61264329114755214738037366081, 2.889581872902175074936023011059, 3.86499588969590591584186435344, 4.247765330810104929058228048648, 5.57464593982132811001956827259, 6.383108085240509954103449341027, 7.00439883492228290996184525632, 7.86660299114804721139394437778, 8.92092899464345415083087547062, 9.419091657788050079077242302203, 10.359592510099212814932439633387, 11.24064416053585340558720759981, 11.62720327147367389195956872162, 12.89967562464647706867725988834, 13.42837748601733022970079643077, 14.00609530225783189799036561777, 14.959426222718475767838416289724, 15.78760257934707870811177856304, 16.38432946995096271079713146563, 17.29713850195669673836179948371, 17.64438622185498081888526876871, 18.81250157415109797608276443937, 19.42902850329475195706536498985, 20.01368266149448903103643429306