L(s) = 1 | + (−0.5 + 0.866i)7-s + (−0.104 − 0.994i)11-s + (−0.104 + 0.994i)13-s + (−0.309 − 0.951i)17-s + (0.309 + 0.951i)19-s + (0.913 + 0.406i)23-s + (−0.669 − 0.743i)29-s + (−0.669 + 0.743i)31-s + (−0.809 − 0.587i)37-s + (−0.104 + 0.994i)41-s + (0.5 − 0.866i)43-s + (0.669 + 0.743i)47-s + (−0.5 − 0.866i)49-s + (0.309 − 0.951i)53-s + (−0.104 + 0.994i)59-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)7-s + (−0.104 − 0.994i)11-s + (−0.104 + 0.994i)13-s + (−0.309 − 0.951i)17-s + (0.309 + 0.951i)19-s + (0.913 + 0.406i)23-s + (−0.669 − 0.743i)29-s + (−0.669 + 0.743i)31-s + (−0.809 − 0.587i)37-s + (−0.104 + 0.994i)41-s + (0.5 − 0.866i)43-s + (0.669 + 0.743i)47-s + (−0.5 − 0.866i)49-s + (0.309 − 0.951i)53-s + (−0.104 + 0.994i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.282 - 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.282 - 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3540529139 - 0.4732722982i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3540529139 - 0.4732722982i\) |
\(L(1)\) |
\(\approx\) |
\(0.8742307252 + 0.06744344257i\) |
\(L(1)\) |
\(\approx\) |
\(0.8742307252 + 0.06744344257i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.104 - 0.994i)T \) |
| 13 | \( 1 + (-0.104 + 0.994i)T \) |
| 17 | \( 1 + (-0.309 - 0.951i)T \) |
| 19 | \( 1 + (0.309 + 0.951i)T \) |
| 23 | \( 1 + (0.913 + 0.406i)T \) |
| 29 | \( 1 + (-0.669 - 0.743i)T \) |
| 31 | \( 1 + (-0.669 + 0.743i)T \) |
| 37 | \( 1 + (-0.809 - 0.587i)T \) |
| 41 | \( 1 + (-0.104 + 0.994i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.669 + 0.743i)T \) |
| 53 | \( 1 + (0.309 - 0.951i)T \) |
| 59 | \( 1 + (-0.104 + 0.994i)T \) |
| 61 | \( 1 + (0.104 + 0.994i)T \) |
| 67 | \( 1 + (-0.669 + 0.743i)T \) |
| 71 | \( 1 + (-0.309 + 0.951i)T \) |
| 73 | \( 1 + (0.809 - 0.587i)T \) |
| 79 | \( 1 + (-0.669 - 0.743i)T \) |
| 83 | \( 1 + (0.978 + 0.207i)T \) |
| 89 | \( 1 + (-0.809 + 0.587i)T \) |
| 97 | \( 1 + (-0.669 - 0.743i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.23468750796535175717849150104, −19.66319932657054996298134249947, −18.798388982314729493433310416136, −17.90645171361065086417101151916, −17.22244280344671571511742569230, −16.77478300977463063440887679638, −15.595938628866727091824305562757, −15.21559287800204450533074757562, −14.34892152420561235924613437549, −13.33860368358665735591661334994, −12.88320717044154662259120672155, −12.23211623287378157814344121117, −10.8968580220518896456943989764, −10.63729558137609503217070118066, −9.68309631154789937561162106836, −8.99984951143563888966156418122, −7.91724991857808365767602134401, −7.20697994134768084190684624723, −6.61595707206157722311446492276, −5.50496648605296884898043940608, −4.706906621230149936436212306626, −3.81665261038906786358576779364, −3.0024936794818655039896018687, −1.94915294220821077157367260926, −0.83178254071812356001175714332,
0.12746487409891472098157187687, 1.39417850110327477222244558459, 2.451071485911319457785549805804, 3.230333155516738615726511825789, 4.11224019635080070185685289495, 5.30736596489904302309967517886, 5.79778174108492513345031457340, 6.76821765988016239496884342369, 7.49707782986755052482745629366, 8.65917128876760440099615280928, 9.09578373203160028866478825690, 9.84943497425305173462707273235, 10.914322049924621524156786411205, 11.626597421804122817980060752313, 12.21113029941409905592004506171, 13.17004415350549736281807539336, 13.829136769074838575925443228822, 14.58788494103986380440518310995, 15.44399357846080050386328790838, 16.27698654606728734338892816370, 16.543466452451375759171547751278, 17.691421580879325670041346198895, 18.5053417924121257350414094462, 19.02998839743000583301740727013, 19.54361782550255373327423342814