| L(s) = 1 | + (0.5 + 0.866i)7-s + (−0.669 + 0.743i)11-s + (−0.669 − 0.743i)13-s + (0.809 + 0.587i)17-s + (−0.809 − 0.587i)19-s + (−0.978 − 0.207i)23-s + (0.913 + 0.406i)29-s + (−0.913 + 0.406i)31-s + (−0.309 + 0.951i)37-s + (−0.669 − 0.743i)41-s + (−0.5 − 0.866i)43-s + (0.913 + 0.406i)47-s + (−0.5 + 0.866i)49-s + (−0.809 + 0.587i)53-s + (−0.669 − 0.743i)59-s + ⋯ |
| L(s) = 1 | + (0.5 + 0.866i)7-s + (−0.669 + 0.743i)11-s + (−0.669 − 0.743i)13-s + (0.809 + 0.587i)17-s + (−0.809 − 0.587i)19-s + (−0.978 − 0.207i)23-s + (0.913 + 0.406i)29-s + (−0.913 + 0.406i)31-s + (−0.309 + 0.951i)37-s + (−0.669 − 0.743i)41-s + (−0.5 − 0.866i)43-s + (0.913 + 0.406i)47-s + (−0.5 + 0.866i)49-s + (−0.809 + 0.587i)53-s + (−0.669 − 0.743i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.995 + 0.0906i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.995 + 0.0906i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01739754109 + 0.3831236049i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.01739754109 + 0.3831236049i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8257094905 + 0.1554897976i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8257094905 + 0.1554897976i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.669 + 0.743i)T \) |
| 13 | \( 1 + (-0.669 - 0.743i)T \) |
| 17 | \( 1 + (0.809 + 0.587i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
| 23 | \( 1 + (-0.978 - 0.207i)T \) |
| 29 | \( 1 + (0.913 + 0.406i)T \) |
| 31 | \( 1 + (-0.913 + 0.406i)T \) |
| 37 | \( 1 + (-0.309 + 0.951i)T \) |
| 41 | \( 1 + (-0.669 - 0.743i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.913 + 0.406i)T \) |
| 53 | \( 1 + (-0.809 + 0.587i)T \) |
| 59 | \( 1 + (-0.669 - 0.743i)T \) |
| 61 | \( 1 + (-0.669 + 0.743i)T \) |
| 67 | \( 1 + (0.913 - 0.406i)T \) |
| 71 | \( 1 + (-0.809 + 0.587i)T \) |
| 73 | \( 1 + (0.309 + 0.951i)T \) |
| 79 | \( 1 + (-0.913 - 0.406i)T \) |
| 83 | \( 1 + (0.104 - 0.994i)T \) |
| 89 | \( 1 + (-0.309 - 0.951i)T \) |
| 97 | \( 1 + (0.913 + 0.406i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.839344124698884499282651396746, −19.10487421057960902604293522949, −18.3862571945421596745032680350, −17.65493830771213955278321724083, −16.62079463344247804485660675570, −16.50681754632941921426190352123, −15.414247623420862342628885715312, −14.39906119563860928514665802429, −14.06192140703009418709174307974, −13.25741029424555534867789496265, −12.30928499638824765455428905509, −11.59495595239844924417646171584, −10.77834190619038147284305004494, −10.12435360180246735502345193583, −9.35154437286899742528196981259, −8.19581115578324359254283863999, −7.77856676484567724656096130265, −6.8831006280208094806505103171, −5.95798750998701662669693203655, −5.06955417608973965420592140818, −4.262741691867875567636662577422, −3.44473378230473469572276424796, −2.35773904846213994131948709817, −1.41643470921808759567532336766, −0.12732106848440252055936137749,
1.56009239683931385862518473457, 2.36342121591007539878484319623, 3.16554562500124892335466932972, 4.40657618426062129203555220259, 5.14581503991198723397608260882, 5.78357773620892755579143117849, 6.82904218280574680713490117379, 7.75180810772931240618955826018, 8.34427178407003862194986043618, 9.15886013124772410788970604039, 10.25258652989678355484254312229, 10.543817451446089432988712945014, 11.78491403161783818043813982818, 12.401564567814347971486241171336, 12.86074343827437612793726104276, 14.03138857252534856177244214228, 14.734573921394090688491841738336, 15.382964072385489433490726434264, 15.89792961184351101928131998334, 17.176601864498648128713669244941, 17.49195209033641890122246750625, 18.45031022365826319450409179800, 18.88481966120692117822161416954, 20.002727946382359705701496418080, 20.4083689443480361852186466171