L(s) = 1 | + (−0.5 − 0.866i)7-s + (−0.5 − 0.866i)11-s + (0.5 − 0.866i)13-s + 17-s − 19-s + (0.5 − 0.866i)23-s + (0.5 + 0.866i)29-s + (0.5 − 0.866i)31-s − 37-s + (0.5 − 0.866i)41-s + (−0.5 − 0.866i)43-s + (0.5 + 0.866i)47-s + (−0.5 + 0.866i)49-s + 53-s + (−0.5 + 0.866i)59-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)7-s + (−0.5 − 0.866i)11-s + (0.5 − 0.866i)13-s + 17-s − 19-s + (0.5 − 0.866i)23-s + (0.5 + 0.866i)29-s + (0.5 − 0.866i)31-s − 37-s + (0.5 − 0.866i)41-s + (−0.5 − 0.866i)43-s + (0.5 + 0.866i)47-s + (−0.5 + 0.866i)49-s + 53-s + (−0.5 + 0.866i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8132614870 - 0.5694518237i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8132614870 - 0.5694518237i\) |
\(L(1)\) |
\(\approx\) |
\(0.9424553606 - 0.2538749687i\) |
\(L(1)\) |
\(\approx\) |
\(0.9424553606 - 0.2538749687i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.5 + 0.866i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.766383256644292535606389490524, −26.36211823466339694260977952108, −25.58668460334434362380163045889, −24.8637834131174703725262035490, −23.42775401614163894365262618434, −22.96196340905600902865996163234, −21.48633939153869672568560378632, −21.08473063415780744321646034264, −19.58440274168784408903561410462, −18.8543394459105857093044587474, −17.87818650461253480004234397673, −16.71277728735171898631308582918, −15.67400720792844415606271717081, −14.88136363030519084360387488709, −13.59652484468391765899678529630, −12.53222413683686250413244950762, −11.714232568686023063881998368140, −10.321887412739842635423742594312, −9.3511215780445861466263001036, −8.28040763929447618226531573002, −6.94143051731267387444982011292, −5.856253164341548960031422553456, −4.615662313709134543824626766799, −3.14838030034735028474594373299, −1.831181252524657654014537633443,
0.83103712433728346014967547012, 2.856531980769036553486637640554, 3.91624399203579866426284342576, 5.42257862547026493068073957241, 6.54100600714355538211985360064, 7.78160248134562047397367211174, 8.78593340831895684769143134763, 10.32846670263645634680939972273, 10.77414498878964203602280130083, 12.36972748029010097145931325595, 13.27159636850692968269197240088, 14.18198782953574104772481163911, 15.44552114948533291377363490337, 16.44988372313307082196905029683, 17.22938514442586849831630391666, 18.54816106508837633008257744178, 19.32268016907647316446690806206, 20.48423734811887234244125458373, 21.21451049933657134432803381491, 22.52245957282948230917842289638, 23.281838030661127205023922601475, 24.1519119510735641384082454425, 25.402687747058757906222202892999, 26.13313730506446909555509348668, 27.13593722502614934573153754737